First, you make a force body diagram to illustrate the problem. Then, apply Newton's laws of motion.
Summation of forces along the y-direction:
F = 0 (bodies at equilibrium) = Normal force - weight*cos45 = 0
Normal force = wcos45
Summation of forcesalong the x-direction:
F = 0 (bodies at equilibrium) = Frictional force - weight*sin45 = 0
x*Normal force - weight*sin45 = 0 (let x be the min coeff of static friction)
x*weight*cos45 = weight*sin 45
x = sin45/cos45 = 1
Therefore, the minimum coefficient of static friction must be 1.
Answer:
The speed of the police car is 294 m/s
Explanation:
Given;
frequency of the siren in air, f = 280 Hz
speed of sound in air, v = 343 m/s
Determine the wavelength of the sound in air to the stationary car:
v = fλ
where;
λ is wavelength of the sound
λ = v/f
λ = 343 / 280
λ = 1.225 m
Now, determine the speed at which the police car is approaching the stationary car;
The actual frequency of the police car, F = 240 Hz
V = Fλ
Where;
V is speed of the police car
λ is the distance between the police car and the stationary car, (wavelength)
V = 240 x 1.225
V = 294 m/s
Therefore, the speed of the police car is 294 m/s
There’s nothing! No pictures
Answer:
the answer is A Cycles of solar flares and prominences heat and cool the layers below the sun’s surface
Explanation:
i took the quiz
Answer:
x' = 1.01 m
Explanation:
given,
mass suspended on the spring, m = 0.40 Kg
stretches to distance, x = 10 cm = 0. 1 m
now,
we know
m g = k x
where k is spring constant
0.4 x 9.8 = k x 0.1
k = 39.2 N/m
now, when second mass is attached to the spring work is equal to 20 J
work done by the spring is equal to


x'² = 1.0204
x' = 1.01 m
hence, the spring is stretched to 1.01 m from the second mass.