Answer:
Theoretical yield of C8H8BrNO:
In moles
0.000945
In grams
0.204
Explanation:
Theoretical yield of a reaction is defined as the quantity of the product obtained from the complete conversion of a limiting reactant in a chemical reaction. Theoretical yield can be expressed as grams or moles.
Equation of reaction:
C8H9NO + Br2 --> C8H8BrNO + HBr
Since C8H9NO is the limiting reagent, 1 mole of C8H9NO reacted to form 1 mole of C8H8BrNO
Mass of C8H9NO = 129 mg
= 0.129 g.
Molar mass of C8H9NO = 135.17 g/mol.
Number of moles of C8H9NO = mass/molar mass.
= 0.129/135.17
= 0.00095 moles of C8H9NO
Since 1 mole of C8H9NO yielded 1 mole of C8H8BrNO
Therefore, 0.000954 moles of C8H8BrNO
Theoretical yield (in grams) = molar mass * number of moles
= 214.06 * 0.00095
= 0.204 of C8H8BrNO
C. Aluminum (Al) oxidized, zinc (Zn) reduced
<h3>Further explanation</h3>
Given
Metals that undergo oxidation and reduction
Required
A galvanic cell
Solution
The condition for voltaic cells is that they can react spontaneously, indicated by a positive cell potential.

or:
E ° cell = E ° reduction-E ° oxidation
For the reaction to occur spontaneously (so that it E cell is positive), the E° anode must be less than the E°cathode
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The standard potential value(E°) from left to right in the voltaic series will be greater, so that the metal undergoing an oxidation reaction (acting as an anode) must be located to the left of the reduced metal (as a cathode)
<em />
From the available answer choices, oxidized Al (anode) and reduced Zn (cathode) are voltaic/galvanic cells.
Because it throws the earth off balance and if it does it often enough then it will soon add up.
starfish , squid , sea turtle are the only ones i know