The first answer is B and the second answer is B
It is a compound because a compound is two or more different elements chemically combined.
<h3>
Answer:</h3>
Temperature is 529.164 K
<h3>
Explanation:</h3>
We are given
Number of moles of Ne (n) = 0.019135 moles
Volume (V) = 878.3 mL
Pressure (P) = 0.946 atm
We are required to calculate the temperature;
We can do this using the ideal gas law equation which is;
PV = nRT, where P is the pressure, n is the number of moles, V is the volume, R is the ideal gas constant (0.082057 Latm/mol/K) and T is the temperature.
From the equation;



Therefore, the temperature will be 529.164 K.
Answer:
A) if the system is isothermal then all the heat added to the system will be used to do work (since none is used to raise the temperature of the gas). The heat added will be equal to the work done = 340 J
B) change in internal energy of the system of the process is isothermal will be zero, since there is no rise in temperature.
C) an adiabatic process is one involving no heat loss or gain through the system, Therefore heat gain will be zero
D) if the process is adiabatic then there is no heat loss or gain through the system and hence there is no change in temperature. Change in internal energy will be zero
E) if the process is isobaric then, there is no work done and the total heat to the system is equal zero
F) if there is no work done, and no heat added, then the internal energy will be equal zero.