<span>The proton differs from the electron in sign although they have the same value. Like the electron, a proton will gain 215 electron-volts of eV in Kinetic energy. So 1.602Ă—10^-19 J * 215 = 344.43 * 10^(-19) J.
But K. E. = mv^2 / 2, so v^2 = 2 * K.E/m. The mass of a proton is 1.673 * 10^-27 kg. So v = âš(2 * 344.43 * 10^(-19))/1.673Ă—10^-27 = 688.86 * 10^(-19)/1.673Ă—10^(-27) = 411.75 * 10^(-19-(-27)) = âš411.75 * 10^(8) = 202196.56
Also for the electron we have v^2 = 2 * K.E/m but here mass, m, = 9.109 * 10^-31 kg. So we have v = âš(2 * 344.43 * 10^(-19)) / 9.109 * 10^-31 = 688.86 * 10^(-19)/ 9.109 * 10^-31 = 75.624 * 10^(-19 - (-31)) = 75.624 * 10^(21) and v = 2.749 * 10^11</span>
Answer:
540 nm
Explanation:
According to the question,
The refractive index of the soap bubble,
.
The thickness of the soap bubble wall is,
.
Now, for constructive interference of soap bubble.
.
Now for first order m=1.
Therfore,

Substitute all the variables in the above equation.
.
Therefore,
.
Therefore the visible light wavelength which is strongly reflected is 540 nm.
I believe the answer is C. Hope this helps!!
Answer:
A)
0.395 m
B)
2.4 m/s
Explanation:
A)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= initial position of spring from equilibrium position = 0.21 m
= initial speed of the cart = 2.0 ms⁻¹
= amplitude of the oscillation = ?
Using conservation of energy
Final spring energy = initial kinetic energy + initial spring energy

B)
= mass of the cart = 1.4 kg
= spring constant of the spring = 50 Nm⁻¹
= amplitude of the oscillation = 0.395 m
= maximum speed at the equilibrium position
Using conservation of energy
Kinetic energy at equilibrium position = maximum spring potential energy at extreme stretch of the spring
