A) current
(I is always current in electricity)
Answer:
Power = Work / Time
P = 400 kg * 9.8 m/s * 4.5 m / 3600 sec = 4.9 J/s = 4.9 Watts
Also, 4.9 Watts / (746 Watts / Horsepower) = .0066 Hp
Answer:
1.25 m/s
Explanation:
Given,
Mass of first ball=0.3 kg
Its speed before collision=2.5 m/s
Its speed after collision=2 m/s
Mass of second ball=0.6 kg
Momentum of 1st ball=mass of the ball*velocity
=0.3kg*2.5m/s
=0.75 kg m/s
Momentum of 2nd ball=mass of the ball*velocity
=0.6 kg*velocity of 2nd ball
Since the first ball undergoes head on collision with the second ball,
momentum of first ball=momentum of second ball
0.75 kg m/s=0.6 kg*velocity of 2nd ball
Velocity of 2nd ball=0.75 kg m/s ÷ 0.6 kg
=1.25 m/s
Answer:
Change in electric potential energy is -28.0 J
Explanation:
Electric potential energy is defined as the work is done to move a charge particle from one position to another in space in the presence of other charge particle or electric potential.
OR
Electric potential energy is also equal to the change in the configuration of the charge particles.
Thus,
Change in electric potential energy = - Work Done
According to the problem, Work Done is equal to 28 J. Thus,
Change in electric potential energy = -28 J
Answer:
Speed is the rate at which an object's position changes, measured in meters per second. The equation for speed is simple: distance divided by time
Explanation: