Answer:
Continuous random variable
Explanation:
The distance that baseball travels after being hit is a random variable and it assume any real value defined on the sample space.
The distance is measurable and thus is continuous random variable because continuous variable cannot be counted but could be measured.
B. 60 cm
All parallel light rays are bent through the focal point of a convex lens, so the rays from the flashlight 150 cm above the floor must go through the same point on the principal axis as the rays from the flashlight 120 cm above the floor. The location of the focal point does not change when the position of the object is moved either vertically or horizontally.
Hope this helps !
It’s blurry the pic
But I think that is the second one
Answer:
Gravitational potential energy to kinetic energy to gravitational potential energy to kinetic energy to gravitational potential energy.
Explanation:
Starting at its maximum displacement the pendulum will have only gravitational potential energy, its velocity being 0m/s. When released, it will lose height, losing then gravitational potential energy as it gains speed, or kinetic energy. When the pendulum is at its lowest the gravitational potential energy will be at its minimum and the kinetic energy at its maximum (and so its speed), with value equal to the original gravitational potential energy. Then it starts gaining height again, reverting this process, gaining gravitational potential energy and losing kinetic energy until the velocity is 0m/s again, thus returning to the state of maximum gravitational potential energy (same as originally) and null kinetic energy, but on the opposite side of the oscillation. Then the pendulum comes back repeating the exact same process just descibed, until it finishes one oscillation when reaching the original point.