Answer:
4
Explanation:
In order for the current to continue flowing through the circuit (and for the bulbs to continue shining), there must be a closed path containing the battery where current can flow. Let's see the effect of removing each bulb on the circuit:
- 1: when removing bulb 1 only, the current can still flow through the path battery-bulb 3- bulb 4
- 2: when removing bulb 2 only, the current can still flow through the path battery-bulb 3- bulb 4
- 3: when removing bulb 3 only, the current can still flow through the path battery-bulb 1-bulb 2- bulb 4
- 4: when removing bulb 4 only, the current can no longer flow. In fact, there is no closed path that contains the battery now, so the current will not flow and all the bulbs will stop shining.
Time taken by the water balloon to reach the bottom will be given as

here we know that


now by the above formula



now in the same time interval we can say the distance moved by it will be


so it will fall at a distance 15.7 m from its initial position
Answer:
C. Evaporating water from the container.
Explanation:
The concentration of solution changes when solvent or solute are added/removed from a solution.
Answer:
5308.34 N/C
Explanation:
Given:
Surface density of each plate (σ) = 47.0 nC/m² = 
Separation between the plates (d) = 2.20 cm
We know, from Gauss law for a thin sheet of plate that, the electric field at a point near the sheet of surface density 'σ' is given as:

Now, as the plates are oppositely charged, so the electric field in the region between the plates will be in same direction and thus their magnitudes gets added up. Therefore,

Now, plug in
for 'σ' and
for
and solve for the electric field. This gives,

Therefore, the electric field between the plates has a magnitude of 5308.34 N/C
Answer:
The time taken will be 0.553 seconds.
Explanation:
We should start off by finding the force exerted by the rope on the 3kg weight in this case.
Weight of 5kg mass = 5 * 9.81 = 49.05 N
Weight of 3kg mass = 3 * 9.81 = 29.43 N
The force acting upward on the 3kg mass will equal the weight of the 5kg mass. Thus the resultant force acting on the 3kg mass is:
Total force = 49.05 - 29.43 = 19.62 N (upwards)
We can now find the acceleration:
F = m * a
19.62 = 3 * a
a = 6.54 m/s^2
We now use the following equation of motion to get the time taken to travel 1 meter:


t = 0.553 seconds