1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksandrvk [35]
3 years ago
12

What might you have if you dont feel well?

Physics
2 answers:
Paul [167]3 years ago
6 0
You will have medicine
snow_lady [41]3 years ago
3 0
You may have a cold if you do not feel well, depends on the symptoms
You might be interested in
Which term describes the difference in electrical charge across a membrane?
hammer [34]
Membrane potential, it’s the difference in electrical charge across the membrane.
7 0
3 years ago
Which instrument is launched into the atmosphere to collect pressure, temperature, humidity, wind speed, and other data?
koban [17]
C. Radiosonde is the answer

the above mentioned is not correct
5 0
3 years ago
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
What 1columb=?<br> please help​
Juli2301 [7.4K]

Explanation:

it's a unit used to measure charge (C)

1C=1000millicoulombs

1millicoulomb=1000microcoulumbs

7 0
2 years ago
Read 2 more answers
Determine the net work a hiker must do on a 3.35-kg backpack to carry it up a
Sphinxa [80]

Answer:

410.4J

Explanation:

Step one:

given

mass= 3.35kg

weight= 3.35*9.81= 32.86N

h=12.49m

Required

The net work done

Step two:

the work done is given  as

WD= force* distance

WD= 32.86*12.49

WD= 410.4J

8 0
3 years ago
Other questions:
  • An automobile moves at a constant speed over the crest of a hill traveling at a speed of 88.5 km/h. At the top of the hill, a pa
    8·1 answer
  • Friction is generated when _____ interact with each other on sliding surfaces.....  solids ,molecules, forces ,fluids
    8·2 answers
  • According to Newton’s law of universal gravitation, the sun would have blank gravity than earth because it is more blank
    9·2 answers
  • The quantity represented by vi is a function of time (i.e., is not constant).A. TrueB. False
    11·1 answer
  • Scientists in a test lab are testing the hardness of a surface before constructing a building. Calculations indicate that the en
    8·1 answer
  • The peak of the trajectory occurs at time t1. This is the point where the ball reaches its maximum height ymax. At the peak the
    12·1 answer
  • A beam of unpolarized light shines on a stack of five ideal polarizers, set up so that the angles between the polarization axes
    12·1 answer
  • 4. A steel cable spanning a river is 220.000 m long when the temperature is 30.°C.
    9·1 answer
  • Help please:))))))))))))))))))))
    12·1 answer
  • the atomic number of uranium-235 is 92, its half-life is 704 million years, and the radioactive decay of 1 kg of 235u releases 6
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!