Answer:
Population I stars are usually the blue younger stars. They orbit in the disk and they are relatively rich in metals. Population II stars are the red, older stars that lies in the bulge and halo of the Galaxy. They orbits in the elliptical orbits in the halo.
Population I stars include the sun and tend to be luminous, hot and young, concentrated in the disks of spiral galaxies. They are particularly found in the spiral arms. while, Population II stars tend to be found in globular clusters and the nucleus of a galaxy. They tend to be older, less luminous and cooler than Population I stars. They have fewer heavy elements.
Answer:
Option D. 5.45 Ω
Explanation:
From the question given above, the following data were obtained:
Resistance 1 (R₁) = 10 Ω
Resistance 2 (R₂) = 20 Ω
Resistance 3 (R₃) = 30 Ω
Voltage (V) = 120 V
Equivalent resistance (R) =?
The equivalent resistance can be obtained as follow:
1/R = 1/R₁ + 1/R₂ + 1/R₃
1/R = 1/10 + 1/20 + 1/30
Find the least common multiple (lcm) of 10, 20 and 30. The result is 60
Divide 60 by each of the denominators and multiply by their numerators respectively. We have:
1/R = (6 + 3 + 2)/60
1/R = 11/60
Invert
R = 60/11
R = 5.45 Ω
Thus, the equivalent resistance in the circuit is 5.45 Ω
Answer:
The correct option is;
The sports car, because it has less mass and therefore less inertia
Explanation:
Newton's first law of motion states that an object will continue in its state of rest or uniform motion in a straight line unless acted on by a force. The property exhibited by the object is known as inertia
Newton's second law states that force is directly proportional to the rate of change of momentum produced
The rate of change of momentum of an object is directly proportional to the resultant force applied and is in the direction of the resultant force. The resultant force is equal to the rate of change of momentum.
Therefore, we have;
F = m·dv/dt = m×a
Given that the force required to move an object is directly proportional to its mass therefore, the inertia or the object resistance that requires a force to bring change is directly proportional to the mass of the object.
The mass of a sports car being considered lesser than the mass of the minivan will require less force to push and therefore has less inertia.
<h2>Answers:</h2><h2 /><h2>a) Arrow B</h2><h2>b) Arrow E</h2>
Explanation:
Refraction is a phenomenon in which a wave (the light in this case) bends or changes its direction <u>when passing through a medium with a refractive index different from the other medium.</u> Where the Refractive index is a number that describes how fast light propagates through a medium or material.
According to this, if we observe the rays A an D passing throgh the biconcave lens, we will have two mediums:
1) The air
2)The material of the biconcave lens
This two mediums have different refractive indexes, hence the rays will change the direction.
-For the incident ray A, the corresponding refractive ray is B, because is the ray that bends after passing throgh the lens
-For the incident ray D, the refracted ray is E following the same principle.
Answer:
It will take 30 seconds to reach the ground, and it will be travelling at 294 m/s when it does so. This means that its average velocity was 147 m/s.
Explanation:

Since the initial velocity of a dropped object is 0, we can make this the equation:


The final velocity can be calculated with the formula:

Once again, since there is no initial velocity:

Since the initial velocity is 0, the average vertical velocity is 294/2=147 m/s.
Hope this helps!