Answer:
Sound vibrations travel in a wave pattern, and we call these vibrations sound waves. Sound waves move by vibrating objects and these objects vibrate other surrounding objects, carrying the sound along. ... Sound can move through the air, water, or solids, as long as there are particles to bounce off of.
Explanation:
Answer:
45.3°C
Explanation:
Heat gained = mass × specific heat × increase in temperature
q = mC (T − T₀)
Given C = 0.128 J/g/°C, m = 94.0 g, q = 305 J, and T₀ = 20.0°C:
305 J = (94.0 g) (0.128 J/g/°C) (T − 20.0°C)
T = 45.3°C
Answer:
Distance: 75 km
Displacement: 45 km
Explanation:
- Distance is a scalar quantity that refers to the total space covered by an object. It is calculated as the sum of the distances covered in each motion, regardless of their direction. therefore in this case:
distance = 60 km + 15 km = 75 km
- Displacement is a vector quantity whose magnitude is equal to the difference between the final point and the starting point of the motion, so it also takes into account the direction of each motion. In this case, the truck moves 60 km east, and then 15 km west: if we call '0' the starting point, the final point will be then

And so the displacement is

<h2>The option ( c ) is correct </h2>
Explanation:
As the frequency of oscillation of any oscillator is doubled
The velocity of sound v = νλ
here ν is the frequency and λ is the wavelength
Now if ν becomes double , the wavelength λ becomes one half . The velocity of sound remains the same in the same medium .
Thus option ( c ) is correct