The answer to question one is A.
The answer to question two is A.
The answer to question three is D.
Answer: D. They are the coldest stars.
Explanation:
Answer:
Q = 12540 J
Explanation:
It is given that,
Mass of water, m = 50 mL = 50 g
It is heated from 0 degrees Celsius to 60 degrees Celsius.
We need to find the energy required to heat the water. The formula use to find it as follows :

Where c is the specific heat of water, c = 4.18 J/g°C
Put all the values,

So, 12540 J of energy is used to heat the water.
Answer:
The RMS voltage across the resistor = 28 V
Explanation:
Capacitor: A capacitor is an electrical device that has the ability to store electrical charges in an electrical circuit. It is expressed in Farad (F)
Resistor: A resistor is an electrical device that oppose the flow of electric current in a circuit. It is expressed in ohms (Ω)
RMS Voltage : RMS voltage value of an alternating voltage is defined as that value of steady voltage which would dissipate heat at the same rate in a given resistance
Since the it is a series circuit, the total voltage is divided across the resistance and the capacitor.
Vt = V₁ + V₂...........................Equation 1
Where Vt = total Rms voltage = 120 V , V₁ = Rms voltage across the Capacitor = 92 V, V₂ = Rms voltage across the resistor.
Making V₂ the subject of the equation in equation 1 above,
V₂ = Vt - V₁ = 120 - 92
V₂ = 28 V.
The RMS voltage across the resistor = 28 V
Answer:
<u></u>
- <u>1. The potential energy of the swing is the greatest at the position B.</u>
- <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>
Explanation:
Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.
The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>
Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,