Answer:
σ -> 2sp²
π -> 2p
Explanation:
The carbon has valence shell 2s 2p, and, both of them make 3 σ bonds and 1 π bond. The π bond only occurs in multiple bonds.
The σ bonds happen at the hybrids orbitals, which are orbitals formed by the association of the pure orbitals (s, p, d, f). The hybridization occurs to make possible to the atom to do the bonds because the electrons need to be isolated in it.
On the other hand, the π bonds only occur at pure orbitals. The subshell s only has 1 orbital, and the subshell p has 3 orbitals. So, because there are 3 σ bonds, it's necessary 3 hybrids orbitals (1 of s + 2 of p).
The σ bonds happen at the orbital 2sp² and the π bond at the 2p pure orbital.
<span> As we know that MgI2 (magnesium iodide) when dissociated it gives more ions than the KI so it has more boiling point as its boiling point is high it means that it boils more so it has low vapor pressure and freezing point
On the other hand as we know that KI dissociates into two ions so so it has high freezing and vapor pressure
hope it helps</span>
We are given with
Cobalt phosphate - CoPO4
We are asked for the net ionic equation for the phosphate dissolving in H3O+
The net ionic equation is
CoPO4 (s) + H3O+ (aq) -----> HPO42- (aq) + Co3+ (aq) + H2O *(l)
Answer:
The Kc of this reaction is 311.97
Explanation:
Step 1: Data given
Kp = 0.174
Temperature = 243 °C
Step 2: The balanced equation
N2(g) + 3H2(g) ⇌ 2NH3(g)
Step 3: Calculate Kc
Kp = Kc *(RT)^Δn
⇒ with Kp = 0.174
⇒ with Kc = TO BE DETERMINED
⇒ with R = the gas constant = 0.08206 Latm/Kmol
⇒ with T = the temperature = 243 °C = 516 K
⇒ with Δn = number of moles products - moles reactants 2 – (1 + 3) = -2
0.174 = Kc (0.08206*516)^-2
Kc = 311.97
The Kc of this reaction is 311.97
Answer:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land.
Explanation:
Sea breeze moves from the areas of higher pressure on the water in the direction of the areas of lower pressure on land. Whereas, land breeze blows from the areas of higher pressure on land to the areas of lower pressure on water.