Answer:
The acceleration of an object depends directly upon the net force acting upon the object, and inversely upon the mass of the object. As the force acting upon an object is increased, the acceleration of the object is increased. As the mass of an object is increased, the acceleration of the object is decreased.
Explanation:
hope it helps pls give me brainless
Let us start from considering monochromatic light as an incidence on the film of a thickness t whose material has an index of refraction n determined by their respective properties.
From this point of view part of the light will be reflated and the other will be transmitted to the thin film. That additional distance traveled by the ray that was reflected from the bottom will be twice the thickness of the thin film at the point where the light strikes. Therefore, this relation of phase differences and additional distance can be expressed mathematically as

We are given the second smallest nonzero thickness at which destructive interference occurs.
This corresponds to, m = 2, therefore


The index of refraction of soap is given, then

Combining the results of all steps we get

Rearranging, we find



The applied force is different for the two cases
The case A with a greater force involves the greatest momentum change
The case A involves the greatest force.
<h3>What is collision?</h3>
- This is the head-on impact between two object moving in opposite or same direction.
The initial momentum of the two ball is the same.
P = mv
where;
- m is the mass of each
- v is the initial velocity of each ball
Since the force applied by the arm is different, the final velocity of the balls before stopping will be different.
Thus, the final momentum of each ball will be different
The impulse experienced by each ball is different since impulse is the change in momentum of the balls.
J = ΔP
The force applied by the rigid arm is greater than the force applied by the relaxed arm because the force applied by the rigid arm will cause the ball to be brought to rest faster.
Thus, we can conclude the following;
- The applied force is different for the two cases
- The case A with a greater force involves the greatest momentum change
- The case A involves the greatest force.
Learn more about impulse here: brainly.com/question/25700778