Answer:
Gravitational lensing
Explanation:
In general relativity, the path of light will get deflected due to presence of matter. This is because matter can curve spacetime.
Answer:

Explanation:
As we know by the principle of uncertainty that the product of uncertainty in position and uncertainty in momentum is given as

so here we know that


so we have


Exothermich cools and endo heats so it heats
-- The car starts from rest, and goes 8 m/s faster every second.
-- After 30 seconds, it's going (30 x 8) = 240 m/s.
-- Its average speed during that 30 sec is (1/2) (0 + 240) = 120 m/s
-- Distance covered in 30 sec at an average speed of 120 m/s
= <span> 3,600 meters .</span>
___________________________________
The formula that has all of this in it is the formula for
distance covered when accelerating from rest:
Distance = (1/2) · (acceleration) · (time)²
= (1/2) · (8 m/s²) · (30 sec)²
= (4 m/s²) · (900 sec²)
= 3600 meters.
_________________________________
When you translate these numbers into units for which
we have an intuitive feeling, you find that this problem is
quite bogus, but entertaining nonetheless.
When the light turns green, Andy mashes the pedal to the metal
and covers almost 2.25 miles in 30 seconds.
How does he do that ?
By accelerating at 8 m/s². That's about 0.82 G !
He does zero to 60 mph in 3.4 seconds, and at the end
of the 30 seconds, he's moving at 534 mph !
He doesn't need to worry about getting a speeding ticket.
Police cars and helicopters can't go that fast, and his local
police department doesn't have a jet fighter plane to chase
cars with.
The formula to find the kinetic energy is:
Ek= 1/2 × m × v^2
1. Ek= 1/2×15×3^2
= 67.5 J
2.Ek= 1/2×8×4^2
=64 J
3.Ek= 1/2×12×5^2
= 150 J
4.Ek= 1/2×10×6^2
= 180 J
So the fourth dog has the most kinetic energy.