Answer:
29.16 J
Explanation:
From Hook's law,
W = 1/2(ke²)..................... Equation 1
Where W = work done, k = Spring constant, e = extension.
Given: W = 9 J, e = 0.5 m.
Substitute into equation 1
9 = 1/2(k×0.5²)
Solve for k
k = 18/0.5²
k = 72 N/m.
The work done required to stretch the spring by additional 0.4 m is
W = 1/2(72)(0.4+0.5)²
W = 36(0.9²)
W = 29.16 J.
Answer:
The centripetal acceleration of the stone is 5 m/s²
Explanation:
The length of the string to which the stone is attached, r = 1 m
The speed with which the string is rotated, v = 5 m/s
The centripetal acceleration,
, is given as follows;

Therefore, the centripetal acceleration of the stone found as follows;

The centripetal acceleration of the stone,
= 5 m/s².
Answer:
0.358Kg
Explanation:
The potential energy in the spring at full compression = the initial kinetic energy of the bullet/block system
0.5Ke^2 = 0.5Mv^2
0.5(205)(0.35)^2 = 12.56 J = 0.5(M + 0.0115)v^2
Using conservation of momentum between the bullet and the block
0.0115(265) = (M + 0.0115)v
3.0475 = (M + 0.0115)v
v = 3.0475/(M + 0.0115)
plugging into Energy equation
12.56 = 0.5(M + 0.0115)(3.0475)^2/(M + 0.0115)^2
12.56 = 0.5 × 3.0475^2 / ( M + 0.0115 )
12.56 = 0.5 × 9.2872/ M + 0.0115
12.56 = 4.6436/ M + 0.0115
12.56 ( M + 0.0115 ) = 4.6436
12.56M + 0.1444 = 4.6436
12.56M = 4.6436 - 0.1444
12.56 M = 4.4992
M = 4.4992÷12.56
M = 0.358 Kg
D is the best answer. In many physics problems we treat an extended object as if it were a point with the same mass located at the center of mass.
PART A)
By Snell's law we know that

here we know that



now from above equation we have


so it will refract by angle 39.3 degree
PART B)
Here as we can see that image formed on the other side of lens
So it is a real and inverted image
Also we can see that size of image is lesser than the size of object here
Here we can use concave mirror to form same type of real and inverted image
PART C)
As per the mirror formula we know that



so image will form at 30 cm from mirror
it is virtual image and smaller in size