Answer:
R min = 28.173 ohm
R max = 1.55 ×
ohm
Explanation:
given data
capacitor = 0.227 μF
charged to 5.03 V
potential difference across the plates = 0.833 V
handled effectively = 11.5 μs to 6.33 ms
solution
we know that resistance range of the resistor is express as
V(t) =
...........1
so R will be
R =
....................2
put here value
so for t min 11.5 μs
R = 
R min = 28.173 ohm
and
for t max 6.33 ms
R max =
R max = 1.55 ×
ohm
Answer:
A
Explanation:
A because you are continuing to keep moving and thinking.
Answer:
design hour volumes will be 4000 to 6000
Explanation:
given data
AADT = 150000 veh/day
solution
we get here design hour volumes that is express as
design hour volumes = AADT × k × D ..............1
here k is factor and its range is 8 to 12 % for urban
and D is directional distribution i.e traffic equal divided by the direction
so here design hour volumes will be 4000 to 6000
Answer:
critical stress required for the propagation is 27.396615 ×
N/m²
Explanation:
given data
specific surface energy = 0.90 J/m²
modulus of elasticity E = 393 GPa = 393 ×
N/m²
internal crack length = 0.6 mm
to find out
critical stress required for the propagation
solution
we will apply here critical stress formula for propagation of internal crack
( σc ) =
.....................1
here E is modulus of elasticity and γs is specific surface energy and a is half length of crack i.e 0.3 mm = 0.3 ×
m
so now put value in equation 1 we get
( σc ) =
( σc ) =
( σc ) = 27.396615 ×
N/m²
so critical stress required for the propagation is 27.396615 ×
N/m²