1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolbaska11 [484]
3 years ago
12

An angle is observed repeatedly using the same equipment and procedures producing the data below:35 ∘ 40'00",35 ∘ 40'10",35 ∘ 40

'10", and 35 ∘ 39'55"A) Calculate the standard deviation.B)Calculate the standard deviation of the mean.

Engineering
1 answer:
Helen [10]3 years ago
6 0

Answer: (a) +/- 7.5° (b) +/- 3.75°

Explanation:

See attachment

You might be interested in
The driveshaft of an automobile is being designed to transmit 238 hp at 3710 rpm. Determine the minimum diameter d required for
AURORKA [14]

Explanation:

Below is an attachment containing the solution.

4 0
3 years ago
Pipe (2) is supported by a pin at bracket C and by tie rod (1). The structure supports a load P at pin B. Tie rod (1) has a diam
Galina-37 [17]

Answer:

P_max = 25204 N

Explanation:

Given:

- Rod 1 : Diameter D = 12 mm , stress_1 = 110 MPa

- Rod 2: OD = 48 mm , thickness t = 5 mm , stress_2 = 65 MPa

- x_1 = 3.5 mm ; x_2 = 2.1 m ; y_1 = 3.7 m

Find:

- Maximum Force P_max that this structure can support.

Solution:

- We will investigate the maximum load that each Rod can bear by computing the normal stress due to applied force and the geometry of the structure.

- The two components of force P normal to rods are:

               Rod 1 : P*cos(Q)  

               Rod 2: - P*sin(Q)

where Q: angle subtended between x_1 and Rod 1 @ A. Hence,

               Q = arctan ( y_1 / x_1)

               Q = arctan (3.7 / 2.1 ) = 60.422 degrees.

- The normal stress in each Rod due to normal force P are:

               Rod 1 : stress_1 = P*cos(Q)  / A_1

               Rod 2: stress_2 = - P*sin(Q)  / A_2

- The cross sectional Area of both rods are A_1 and A_2:

               A_1 = pi*D^2 / 4

               A_2 = pi*(OD^2 - ID^2) / 4

- The maximum force for the given allowable stresses are:

               Rod 1: P_max =  stress_1 * A_1 / cos(Q)

                          P_max = (110*10^6)*pi*0.012^2 / 4*cos(60.422)

                          P_max = 25203.61848 N

               Rod 2: P_max =  stress_2 * A_2 / sin(Q)

                          P_max = (65*10^6)*pi*(0.048^2 - 0.038^2) / 4*sin(60.422)

                          P_max = 50483.4 N

- The maximum force that the structure can with-stand is governed by the member of the structure that fails first. In our case Rod 1 with P_max = 25204 N.

             

8 0
2 years ago
Where are the ar manufacturers not fitting the engine in the high end sport cars
fomenos

Answer:

it depends on the but i would recommend check in the front next to the turbo intake.

8 0
2 years ago
(a) The lower yield point for an iron that has an average grain diameter of 1 x 10-2 mm is 230 MPa. At a grain diameter of 6 x 1
olya-2409 [2.1K]

Answer:

The answer is "4.35 \times 10^{-3}\  mm and 157.5 MPa".

Explanation:

In point A:

The strength of its products with both the grain dimension is linked to this problem. This formula also for grain diameter of 310 MPA is represented as its low yield point  

y =  yo + \frac{k}{\sqrt{x}}

Here y is MPa is low yield point, x is mm grain size, and k becomes proportionality constant.  

Replacing the equation for each condition:  

y = y_o + \frac{k}{\sqrt{(1 \times 10^{-2})}}\\\\\ \ \ \ \ \ \ 230 = yo + 10k\\\\ y = yo + \frac{k}{\sqrt{(6\times 10^{-3})}}\\\\275 = yo + 12.90k

People can get yo = 275 MPa with both equations and k= 15.5 Mpa mm^{\frac{1}{2}}.

To substitute the answer,  

310 = 275 + \frac{(15.5)}{\sqrt{x}}\\\\x = 0.00435 \ mm = 4.35 \times 10^{-3}\  mm

In point b:

The equation is \sigma y = \sigma 0 + k y d^{\frac{1}{2}}

equation is:

75 = \sigma o+4 ky \\\\175 = \sigma o+12 ky\\\\ky = 12.5 MPa (mm)^{\frac{1}{2}} \\\\ \sigma 0 = 25 MPa\\\\d= 8.9 \times 10^{-3}\\\\d^{- \frac{1}{2}} =10.6 mm^{-\frac{1}{2}}\\

by putting the above value in the formula we get the \sigma y value that is= 157.5 MPa

5 0
2 years ago
What is an electrical output device
tester [92]

Answer:

heyoo!

a printer, camera, computerr

hope this helpss>3

Explanation:

7 0
2 years ago
Read 2 more answers
Other questions:
  • Remy noticed that after oiling his skateboard wheels, it was easier to reach the speeds he needed to perform tricks. How did the
    6·1 answer
  • According to Manor, the example of the subway train in New York City is an example of which type of uniqueness?
    9·1 answer
  • Sketch the velocity profile for laminar and turbulent flow.
    15·1 answer
  • Suppose you were a heating engineer and you wished to consider a house as a dynamic system. Without a heater, the average temper
    6·1 answer
  • An airplane flies horizontally at 80 m/s. Its propeller delivers 1300 N of thrust (forward force) to overcome aerodynamic drag (
    15·1 answer
  • La Patrulla Fronteriza de los Estados Unidos analiza la compra de un helicóptero nuevo para la vigilancia aérea de la frontera d
    14·1 answer
  • The difference in potential energy between an electron at the negative terminal and one at the positive terminal is called the _
    11·1 answer
  • Guyss I seriously and urgently need help what are the steps to build a headgear ??​
    5·2 answers
  • Report of invertor to convert 12 volt to 220 volt.
    6·1 answer
  • Who made the frist ever car
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!