Answer:
a) 149 kJ/mol, b) 6.11*10^-11 m^2/s ,c) 2.76*10^-16 m^2/s
Explanation:
Diffusion is governed by Arrhenius equation

I will be using R in the equation instead of k_b as the problem asks for molar activation energy
I will be using

and
°C + 273 = K
here, adjust your precision as neccessary
Since we got 2 difusion coefficients at 2 temperatures alredy, we can simply turn these into 2 linear equations to solve for a) and b) simply by taking logarithm
So:

and

You might notice that these equations have the form of

You can solve this equation system easily using calculator, and you will eventually get

After you got those 2 parameters, the rest is easy, you can just plug them all including the given temperature of 1180°C into the Arrhenius equation

And you should get D = 2.76*10^-16 m^/s as an answer for c)
I would go with C but i am not 100 percent on that
- the last one ‘design meets all the criteria...’
Answer:
the pressure gradient in the x direction = -15.48Pa/m
Explanation:
- The concept of partial differentiation was used in the determination of the expression for u and v.
- each is partially differentiated with respect to x and the appropriate substitution was done to get the value of the pressure gradient as shown in the attached file.
Answer:
The critical length of surface flaw = 6.176 mm
Explanation:
Given data-
Plane strain fracture toughness Kc = 29.6 MPa-m1/2
Yield Strength = 545 MPa
Design stress. =0.3 × yield strength
= 0.3 × 545
= 163.5 MPa
Dimensionless parameter. Y = 1.3
The critical length of surface flaw is given by
= 1/pi.(Plane strain fracture toughness /Dimensionless parameter× Design Stress)^2
Now putting values in above equation we get,
= 1/3.14( 29.6 / 1.3 × 163.5)^2
=6.176 × 10^-3 m
=6.176 mm