Answer:
162500000.
Explanation:
Given that
Diameter of the wire , d= 1.8 mm
The length of the wire ,L = 15 cm
Current ,I = 260 m A
The charge on the electron ,e= 1.6 x 10⁻¹⁹ C
We know that Current I is given as

I=Current
q=Charge
t=time
q= I t
q= 260 m t
The total number of electron = n
q= n e

n=162500000 t

The number of electron passe per second will be 162500000.
Answer:
The maximum value of the induced magnetic field is
.
Explanation:
Given that,
Radius of plate = 30 mm
Separation = 5.0 mm
Frequency = 60 Hz
Suppose the maximum potential difference is 100 V and r= 130 mm.
We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


When r>R, the magnetic field is inversely proportional to the r.
We need to calculate the maximum value of the induced magnetic field that occurs at r = R
Using formula of magnetic filed

Where, R = radius of plate
d = plate separation
V = voltage
Put the value into the formula


Hence, The maximum value of the induced magnetic field is
.
(a) The required magnitude of the electric field when the point charge is an electron is 5.57 x 10⁻¹¹ N/C.
(b) The required magnitude of the electric field when the point charge is an proton is 1.02 x 10⁻⁷ N/C.
<h3>
Magnitude of electric field </h3>
The magnitude of electric field is given by the following equation.
F = qE
But F = mg
mg = qE
E = mg/q
where;
- E is the electric field
- m is mass of the particle
- g is acceleration due to gravity
- q is charge of the particle
<h3>For an electron</h3>
E = (9.11 x 10⁻³¹ x 9.8)/(1.602 x 10⁻¹⁹)
E = 5.57 x 10⁻¹¹ N/C
<h3>For proton</h3>
E = (1.67 x 10⁻²⁷ x 9.8)/(1.602 x 10⁻¹⁹)
E = 1.02 x 10⁻⁷ N/C
Thus, the required vertical electric field is greater when the charge is proton.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
The distance between two particles that are <em>in phase</em>