Given data:
* The mass of the book is 2 kg.
* The initial height of the book is 0.78 m.
* The final height of the book is 2.1 m.
Solution:
(A). The work done by the gravity on the book is,

where m is the mass, g is the acceleration due to gravity, h_i is the initial height and h_f is the final height,
The work is done in moving the object in upward direction where as the gravitational force is acting in the down ward direction. Thus, the value g (acceleration due to gravity) is taken as negative in this case.
Substituting the known values,

Thus, the work done by the gravitational force is -25.9 J.
(B). The work done by the hand on the moving the book is,

Thus, the work done by the hand on the book is 25.9 J.
Answer:
Second drop: 1.04 m
First drop: 1.66 m
Explanation:
Assuming the droplets are not affected by aerodynamic drag.
They are in free fall, affected only by gravity.
I set a frame of reference with the origin at the nozzle and the positive X axis pointing down.
We can use the equation for position under constant acceleration.
X(t) = x0 + v0 * t + 1/2 * a *t^2
x0 = 0
a = 9.81 m/s^2
v0 = 0
Then:
X(t) = 4.9 * t^2
The drop will hit the floor when X(t) = 1.9
1.9 = 4.9 * t^2
t^2 = 1.9 / 4.9

That is the moment when the 4th drop begins falling.
Assuming they fall at constant interval,
Δt = 0.62 / 3 = 0.2 s (approximately)
The second drop will be at:
X2(0.62) = 4.9 * (0.62 - 1*0.2)^2 = 0.86 m
And the third at:
X3(0.62) = 4.9 * (0.62 - 2*0.2)^2 = 0.24 m
The positions are:
1.9 - 0.86 = 1.04 m
1.9 - 0.24 = 1.66 m
above the floor
Total internal reflection causes light to be completely reflected across the boundary between the two media but not transmitted.
<h3>What is total internal reflection?</h3>
The term total internal reflection occurs when light is moving from a denser to a less dense medium such as from glass to air. This phenomenon occurs at the interface between the two media.
There are two conditions necessary for total internal reflection and they are;
1) Light must travel from a denser to a less dense medium
2) The angle of incidence in the denser medium must be greater than the critical angle.
Total internal reflection causes light to be completely reflected across the boundary between the two media but not transmitted.
Learn more about total internal reflection:brainly.com/question/13088998
#SPJ1
Answer: D. A wave with a shorter wavelength is always faster than one with a longer wavelength
Explanation: "Imagine two sets of waves that have the same speed. <u><em>If one set has a longer wavelength, it will have a lower frequency (more time between waves). If the other set has a shorter wavelength, it will have a higher frequency</em></u> (less time between waves). Light moves even faster AND has shorter wavelengths."
Why it's not C: "The number of complete wavelengths in a given unit of time is called frequency (f). <em><u>As a wavelength increases in size, its frequency and energy (E) decrease</u></em>. From these equations you may realize that as the frequency increases, the wavelength gets shorter. As the frequency decreases, the wavelength gets longer."
Why it's not B: "The frequency does not change as the sound wave moves from one medium to another. Since the speed changes and the frequency does not, the wavelength must change."
Why it's not A: "Do loud sounds travel faster than soft sounds? No. Both travel at the same speed The speed depends on the medium it passes through. Louder sounds are simply sound waves with higher amplitude traveling at the same speed."
Answer:
(a) 1.21 m/s² (b) 1.75 m/s²
Explanation:
The initial speed of the car, u = 17.8 m/s
Case 1.
Final speed of the car, v = 23.5 m/s
Time, t = 4.68-s
Acceleration = rate of change of velocity

Case 2.
Final speed of the car, v = 15.3 m/s

Hence, this is the required solution.