According to the right-hand thumb rule, the forefinger gives the velocity of charge, the thumb gives the magnetic force and the center finger gives the direction of magnetic field.
then, as shown in the picture, the <span>direction of the magnetic force on the charge is in the right direction.</span>
Answer:
Can a room be gravitationally shielded? No, it can't.
Explanation:
the room cannot be gravitationally shielded because there is only one gravitational charge, in this case is mass. Mass can always be positive. the room can be electrically shielded because there are two type of charge, positive and negative charge than can cancel each other out.
If Resistors are in series= The equivalent is the sum.
E.g R1 and R2 in series, R = R1 + R2.
If in Parallel, equivalent is Product/sum.
E.g If R1 and R2 in parallel, R = (R1*R2)/(R1+R2)
1.) 60 is parallel with 40 and both are then in series with 20.
60//40 = (60*40)/(60+40) = 2400/100 = 24
Now the 24 is in series with the 20
R = 24 + 20 = 44 ohms.
2.) 80 is in series with 40 and both are then in parallel with 40.
Solving the series, R = 80 + 40 =120.
Parallel: 120//40 = (120*40)/(120+40) = 4800/160 = 30
Equivalent Resistance = 30 ohms.
3.) 100 is in parallel with 100 and both are then in series with the parallel of 50 and 50.
The 1st parallel = (100*100)/(100+100) = 10000/200 = 50
The 2nd parallel = (50*50)/(50+50) = 2500/100 = 25.
Solving the series = 50 + 25 =75 ohms.
Cheers.
It was super heated to turn in to a liquid
<em><u>Advandages</u></em>:
1. Every unit that is connected in a parallel circuit gets equal amount of voltage.
2. It becomes easy to connect or disconnect a new element without affecting the working of other elements.
3. If any fault happened to the circuit, then also the current is able to pass through the circuit through different paths.
<em><u>Disadvantages</u></em>:
1. It requires the use of lot of wires.
2. We cannot increase or multiply the voltage in a parallel circuit.
3. Parallel connection fails at the time when it is required to pass exactly same amount of current through the units.