Sequence: 3/4, 3/16, 3/64, 3/256
a8=?
a1=3/4
a2=3/16
a3=3/64
a4=3/256
a2/a1=(3/16)/(3/4)=(3/16)*(4/3)=4/16=1/4
a3/a2=(3/64)/(3/16)=(3/64)*(16/3)=16/64=1/4
a4/a3=(3/256)/(3/64)=(3/256)*(64/3)=64/256=1/4
a2/a1=a3/a2=a4/a3=r=1/4
an=a1*r^(n-1)
an=(3/4)*(1/4)^(n-1)
an=(3/4)*(1)^(n-1)/(4)^(n-1)
an=(3/4)*(1/4^(n-1))
an=(3*1)/[4*4^(n-1)]
an=3/4^(1+n-1)
an=3/4^n
n=8→a8=3/4^8
a8=3/65,536
Answers:
The general term or nth term for the sequence is: an=3/4^n
a8=3/65,536
multiply the 2 numbers together than divide by 2
7 1/2 = 15/2
12 2/3 = 38/3
15/2 * 38/3 = 570/6 =95
95/2=47.5 square feet
Answer:
The answer is 14
Step-by-step explanation:
e=2
Substitute 2 in for e
8 + 3(2)
Solve
14
We know that
If the scalar product of two vectors<span> is zero, both vectors are </span><span>orthogonal
</span><span>A. (-2,5)
</span>(-2,5)*(1,5)-------> -2*1+5*5=23-----------> <span>are not orthogonal
</span><span>B. (10,-2)
</span>(10,-2)*(1,5)-------> 10*1-2*5=0-----------> are orthogonal
<span>C. (-1,-5)
</span>(-1,-5)*(1,5)-------> -1*1-5*5=-26-----------> are not orthogonal
<span>D. (-5,1)
</span>(-5,1)*(1,5)-------> -5*1+1*5=0-----------> are orthogonal
the answer is
B. (10,-2) and D. (-5,1) are orthogonal to (1,5)