Answer:
Velocity and speed both are continuously increasing.
Acceleration is constant.
Explanation:
Speed is defined as length of path covered by a body per unit time. Speed is a scalar quantity that consist of magnitude only and not direction.
Velocity is defined as the displacement per unit times. Displacement is the shortest distance between the two points. It is a vector quantity and hence has a direction in the direction of displacement along with its own magnitude.
- Both velocity and speed have same unit of measure which is meter per second in S.I. During <em>free fall</em> in the absence of any air resistance the velocity and speed both will be having a vertical downward direction with continuously increasing magnitude. Tough we are not concerned about the direction when discussing about speed but here both are equal since the motion is linear.
Acceleration is the rate of change in velocity of a body which is a vector quantity. For speed we are concerned about instantaneous acceleration since for a short period of time it may have a specific direction.
- During free fall the acceleration is of a body is equal to the acceleration due to gravity and constant when the height of fall is much lesser than the radius of the earth.
Answer:
-1.5m/s²
Explanation:
Acceleration can be thought of as [Change in Velocity]/[Change in time]. To find these changes, you simply subtract the initial quantity from the final quantity.
So for this question you have:
- V_i = 110m/s
- V_f = 80m/s
- t_i = 0s
- t_f = 20s
which means that the acceleration = (80-110)/(20-0)[m/s²] = (-30/20)m/s² = -1.5m/s²
Answer:
hope this helps!
Explanation:
Volume of the air bubble, V1=1.0cm3=1.0×10−6m3
Bubble rises to height, d=40m
Temperature at a depth of 40 m, T1=12oC=285K
Temperature at the surface of the lake, T2=35oC=308K
The pressure on the surface of the lake: P2=1atm=1×1.103×105Pa
The pressure at the depth of 40 m: P1=1atm+dρg
Where,
ρ is the density of water =103kg/m3
g is the acceleration due to gravity =9.8m/s2
∴P1=1.103×105+40×103×9.8=493300Pa
We have T1P1V1=T2P2V2
Where, V2 is the volume of the air bubble when it reaches the surface.
V2=
Wave power can be regarded as a reliable source of energy because the ocean currents are always moving.
<h3>What can be the challenges of wave power?</h3>
Wave power is a device that can be used to convert the mechanical energy of the ocean waves into electrical energy based on the principle of conservation of energy.
The major challenges that face the use of wave power in electricity generation is the unreliability of the waves which leads to uncertainty in the quantity of power generated Also, the wave direction and direction of ocean currents all limit the amount of power generated by this method. However, in spite of challenges, it can be regarded as a reliable source of energy because the ocean currents are always moving.
Learn more about wave power:brainly.com/question/1362067
#SPJ1
Answer:
3 seconds
Explanation:
Since h(t) represents the height and t represents the time, we can set the equation equal to 150 to find t.
-16t^2+96t+6=150
Subtract 150 from both sides to set the equation equal to 0, to find the solutions.
-16t^2+96t-144=0
Factor out -16, because all of the terms are divisible by it.
-16(t^2+6t+9)=0
Now we can focus on the terms inside the parenthesis and factor it again.
t^2-6t+9=0
We need to find two value that can be multiplied to get 9 and added to get -6.
-3 and -3 works.
Thus, we get (x-3)(x-3).
Now solve for 0.
x-3=0
x=3
The object reaches its maximum height after 3 seconds.