The frequency of a simple harmonic oscillator such as a spring-mass system is given by

where
k is the spring constant
m is the mass attached to the spring.
Re-arranging the formula, we get:

and since we know the constant of the spring:

and the frequency of oscillation:
f=1.00 Hz
we can find the value of the mass attached to it:
Answer:
A vacuum would have been created. I hope this helps have a great day
Answer:
See below
Explanation:
Vertical position = 45 + 20 sin (30) t - 4.9 t^2
when it hits ground this = 0
0 = -4.9t^2 + 20 sin (30 ) t + 45
0 = -4.9t^2 + 10 t +45 = 0 solve for t =4.22 sec
max height is at t= - b/2a = 10/9.8 =1.02
use this value of 't' in the equation to calculate max height = 50.1 m
it has 4.22 - 1.02 to free fall = 3.2 seconds free fall
v = at = 9.81 * 3.2 = 31.39 m/s VERTICAL
it will <u>also</u> still have horizontal velocity = 20 cos 30 = 17.32 m/s
total velocity will be sqrt ( 31.39^2 + 17.32^2) = 35.85 m/s
Horizontal range = 20 cos 30 * t = 20 * cos 30 * 4.22 = 73.1 m
Answer:
minimum thickness of the coating = 122.868 nm
Explanation:
Given data
lens index of refraction = 1.29
wavelength = 634 nm
glass index of refraction = 1.53
to find out
minimum thickness of the coating
solution
we have given non reflective coating
so
we know that minimum thickness of the coating formula
minimum thickness of the coating = Wavelength / 4n
here n is coating index of refraction
so put here both value to get thickness
minimum thickness of the coating = Wavelength / 4n
minimum thickness of the coating = 634 / 4 ( 1.29 )
so minimum thickness of the coating = 122.868 nm
There are correlation and causation between the force of the finger and the movement of the books