The last one is correct (D)
Answer:
W = 0 J
Explanation:
The amount of work done by gas at constant pressure is given by the following formula:

where,
W = Work done by the gas
P = Pressure of the gas
ΔV = Change in the volume of the gas
Since the volume of the gas is constant. Therefore, there is no change in the volume of the gas:

<u>W = 0 J</u>
Answer:
Explanation:
The strengthcompassion field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of lines per unit area perpendicular to the lines. The direction of the electric field is tangent to the field line at any point in space. Field lines can never cross. These pattern of lines, sometimes referred to as electric field lines, point in the direction that a positive test charge would accelerate if placed upon the line. As such, the lines are directed away from positively charged source charges and toward negatively charged source charges.
Rules for drawing electric field lines
1. Electric field lines are always drawn from High potential to
low potential.
2. Two electric field lines can never intersect each other.
3. The net electric field inside a Conductor is Zero.
4. Electric field line from a positive charge is drawn radially outwards and from a negative charge radially inwards.
5. The density of electric field lines tells the strength of the electric field at that region.
6. Electric field lines terminate Perpendicularly to the surface of a conductor.
A vector quantity has a direction and a magnitude, while a scalar has only a magnitude. You can tell if a quantity is a vector by whether or not it has a direction associated with it.
So, electric fields are vector quantity due to the fact any student can tell you that a compass is used to determine which direction is north.
Since the compass always point northward, then it has a direction and magnitude and so it is a vector quantity
in case you dont want to read the answer is B
Answer:
B. 0.16 m
Explanation:
The vertical distance by which the player will miss the target is equal to the vertical distance covered by the dart during its motion.
Since the dart is thrown horizontally, the initial vertical velocity is zero:

While the horizontal velocity is

The horizontal distance covered is

Since the dart moves by uniform motion along the horizontal direction, the time it takes for covering this distance is

along the vertical direction, the motion is a uniformly accelerated motion with constant downward acceleration g=9.8 m/s^2, so the vertical distance covered is given by
