I’m confused about this question
Answer:
d = 2021.6 km
Explanation:
We can solve this distance exercise with vectors, the easiest method s to find the components of the position of each plane and then use the Pythagorean theorem to find distance between them
Airplane 1
Height y₁ = 800m
Angle θ = 25°
cos 25 = x / r
sin 25 = z / r
x₁ = r cos 20
z₁ = r sin 25
x₁ = 18 103 cos 25 = 16,314 103 m
= 16314 m
z₁ = 18 103 sin 25 = 7,607 103 m= 7607 m
2 plane
Height y₂ = 1100 m
Angle θ = 20°
x₂ = 20 103 cos 25 = 18.126 103 m = 18126 m
z₂ = 20 103 without 25 = 8.452 103 m = 8452 m
The distance between the planes using the Pythagorean Theorem is
d² = (x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²2
Let's calculate
d² = (18126-16314)² + (1100-800)² + (8452-7607)²
d² = 3,283 106 +9 104 + 7,140 105
d² = (328.3 + 9 + 71.40) 10⁴
d = √(408.7 10⁴)
d = 20,216 10² m
d = 2021.6 km
Time t = ?
<span>When wave is moving from
y = 0 to y =12 cm</span>
By using the formula,
y = 15cos [(π/12) t)] =
0,
cos [(π/12) t)] = 0 =
cos (π/2), so,
(π/12)t = π/2,
t = (π/2) (12/π)
t = 12/2
<span>t = 6 sec</span>
<span>so 6 sec is the least amount of time required</span>
Answer : 6.3 g/cm3
Step by step explanation:
Density = mass/volume
The question is concerned with the regions found within California, which are the Coastal Region, Mountain Region, Central Valley Region, and the Desert Region.
The Coastal Region is located furthest to the west out of all of these regions. The Coastal Region is where the California meets the Pacific Ocean, and it has a somewhat moderate and constant climate throughout the year due to its location near the ocean.