Answer:

Explanation:
First of all let's define the specific molar heat capacity.
(1)
Where:
Q is the released heat by the system
n is the number of moles
ΔT is the difference of temperature of the system
Now, we can find n with the molar mass (M) the mass of the compound (m).
Using (1) we have:


I hope it helps!
I believe it’s B; Theories may be proven to be true and become laws.
A would make sense if we were talking about hypotheses however, we’re not.
Ok so the equation for momentum is:
v=p/m
So you would do:
7800/1200=6.5
So the answer is:
6.5 m/s
Hope this helps :)
Answer:
u= 187.61 ft/s
Explanation:
Given that
g= - 32 ft/s²
The maximum height ,h= 550 ft
Lets take the initial velocity = u ft/s
We know that
v²=u² + 2 g s
v=final speed ,u=initial speed ,s=height
When the object reach at the maximum height then the final speed of the object will become zero.
That is why
u²= 2 x 32 x 550
u²= 35200
u= 187.61 ft/s
That is why the initial speed will be 187.61 ft/s
We calculate current from the formula:

, where q is a electric charge transferred over time t
Time should be converted to seconds:
1h 15 min= 75min= 4500s
I=

Result is in unit-Ampere