Answer:
Current can be induced in a lot of ways. I'll try and list as much of these methods as I can here.
1. Moving a bar magnet relative to a wire coil
2. Moving a wire coil relative to a magnet.
3. Move a wire coil that has electricity flowing though it relative to a wire coil without electricity flowing through it.
4. Moving a current carrying circuit relative to a non-current carrying circuit
5. Rapidly opening and closing the switch of a current carrying circuit beside a non current carrying circuit.
6. Moving a bar magnet through the middle of a wire coil.
7. Moving a wire coil through a magnet
8. Moving a circuit relative to a magnetic field.
The main idea is to cause a change in the magnetic field, or to change the available area of the wire loop, or to change the angle between the field and the loop.
Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
D. Copper and Gold
Copper and gold are used a lot in electrical applications.
Air and wood are insulators and glass is also kinda bad...
Answer:
19.53 cm
Explanation:
The computation of the height is as follows:
Here we applied the conservation of the energy formula
As we know that
P.E of the block = P.E of the spring
m g h = ( 1 ÷ 2) k x^2
where
m = 0.15
g = 9.81
k = 420
x = 0.037
So now put the values to the above formula
(0.15) (9.81) (h) = 1 ÷2 × 420 × (0.037)^2
1.4715 (h) = 0.28749
h = 0.19537 m
= 19.53 cm