Using the constant acceleration formula v^2 = u^2 + 2as, we can figure out that it would take a distance of 193.21m to reach 27.8m/s
Answer:
Explanation:
for baseball
(a) Let the mass of the baseball is m.
radius of baseball is r.
Total kinetic energy of the baseball, T = rotational kinetic energy + translational kinetic energy
T = 0.5 Iω² + 0.5 mv²
Where, I be the moment of inertia and ω be the angular speed.
ω = v/r
T = 0.5 x 2/3 mr² x v²/r² + 0.5 mv²
T = 0.83 mv²
According to the conservation of energy, the total kinetic energy at the bottom is equal to the total potential energy at the top.
m g h = 0.83 mv²
where, h be the height of the top of the hill.
9.8 x h = 0.83 x 6.8 x 6.8
h = 3.93 m
(b) Let the velocity of juice can is v'.
moment of inertia of the juice can = 1/2mr²
So, total kinetic energy
T = 0.5 x I x ω² + 0.5 mv²
T = 0.5 x 0.5 x m x r² x v²/r² + 0.5 mv²
m g h = 0.75 mv²
9.8 x 3.93 = 0.75 v²
v = 7.2 m/s
To model time-variant data, one must create a new entity in an m:n relationship with the original entity, is a False statement.
- Like the majority of software engineering initiatives, the ER process begins with gathering user requirements. What information must be retained, what questions must be answered, and what business rules must be implemented (For instance, if the manager column in the DEPARTMENT table is the only column, we have simply committed to having one manager for each department.)
- The end result of the E-R modeling procedure is an E-R diagram that can be roughly mechanically transformed into a set of tables. Tables will represent both entities and relationships; entity tables frequently have a single primary key, but the primary key for relationship tables nearly invariably involves numerous characteristics.
To know more about entity AND relationship visit : brainly.com/question/28232864
#SPJ4
The momentum increases by a factor of 2
Explanation:
We can solve this problem by rewriting the momentum of the rocket in terms of the kinetic energy and the mass.
The kinetic energy of the rocket is:
(1)
where
m is the mass
v is the velocity
The momentum of the rocket is
(2)
From eq.(1) we get

and substituting into (2),

Now in this problem we have:
- The kinetic energy of the rocket is increased by a factor 8:

- The mass is reduced by half:

Substituting, we find the new momentum:

So, the momentum increases by a factor of 2.
Learn more about momentum and kinetic energy:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
brainly.com/question/6536722
#LearnwithBrainly
Answer:
The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.
Explanation:
Given:-
- The diameter of the drill bit, d = 98 cm
- The power at which drill works, P = 5.85 hp
- The rotational speed of drill, N = 1900 rpm
Find:-
What Torque And Force Is Applied To The Drill Bit?
Solution:-
- The amount of torque (T) generated at the periphery of the cutting edges of the drilling bit when it is driven at a power of (P) horsepower at some rotational speed (N).
- The relation between these quantities is given:
T = 5252*P / N
T = 5252*5.85 / 1900
T = 16.171 Nm
- The force (F) applied at the periphery of the drill bit cutting edge at a distance of radius from the center of drill bit can be determined from the definition of Torque (T) being a cross product of the Force (F) and a moment arm (r):
T = F*r
Where, r = d / 2
F = 2T / d
F = 2*16.171 / 0.98
F = 33 N
Answer: The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.