1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
3 years ago
12

34.6 cL= (blank) hL convert

Physics
1 answer:
shepuryov [24]3 years ago
3 0

<u>Answer</u>

0.00346 hL

<u>Explanation</u>

cL means Centilitre while hL means Hectolitre.

10,000 cL = 1 hL

∴ 34.6 cL = 34.6/10,000  hL

                = <em>0.00346 hL</em>

You might be interested in
Alexandria became the center for _____.<br><br> its science
mart [117]
Alexandria became the center for Hellenistic scholarship and culture. It was a great revolution in learning during this era as Alexandria had a library filled with books and important documents which were copied and even stolen. Over 500,000 titles were present in Alexandria's library.
5 0
3 years ago
A string has its 4th harmonic at 31.5 Hz. What is the fundamental frequency?
seropon [69]

Given data

*The given 4th harmonic frequency is 31.5 Hz

The fundamental frequency is calculated as

\begin{gathered} f_n=\frac{31.5}{4} \\ =7.875\text{ Hz} \end{gathered}

Hence, the fundamental frequency is 7.875 Hz

5 0
1 year ago
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
2 years ago
Read 2 more answers
This is “Fusion Reactions”.<br> Please answer number 8. Thank you.
Angelina_Jolie [31]

Answer:

²₁H + ³₂He —> ⁴₂He + ¹₁H

Explanation:

From the question given above,

²₁H + ³₂He —> __ + ¹₁H

Let ⁿₐX be the unknown.

Thus the equation becomes:

²₁H + ³₂He —> ⁿₐX + ¹₁H

We shall determine, n, a and X. This can be obtained as follow:

For n:

2 + 3 = n + 1

5 = n + 1

Collect like terms

n = 5 – 1

n = 4

For a:

1 + 2 = a + 1

3 = a + 1

Collect like terms

a = 3 – 1

a = 2

For X:

n = 4

a = 2

X =?

ⁿₐX => ⁴₂X => ⁴₂He

Thus, the balanced equation is

²₁H + ³₂He —> ⁴₂He + ¹₁H

8 0
2 years ago
The total resistance of the circuit <br>​
ZanzabumX [31]

The total resistance of a series circuit is equal to the sum of individual resistances. Voltage applied to a series circuit is equal to the sum of the individual voltage drops. The voltage drop across a resistor in a series circuit is directly proportional to the size of the resistor.

If you know the total current and the voltage across the whole circuit, you can find the total resistance using Ohm's Law: R = V / I. For example, a parallel circuit has a voltage of 9 volts and total current of 3 amps. The total resistance RT = 9 volts / 3 amps = 3 Ω

Current: The total circuit current is equal to the sum of the individual branch currents. Resistance: Individual resistances diminish to equal a smaller total resistance rather than add to make the total.

4 0
3 years ago
Read 2 more answers
Other questions:
  • An air compressor compresses 15 L/s of air at 120 kPa and 20°C to 800 kPa and 300°C while consuming 6.2 kW of power. How much of
    7·1 answer
  • What is the term that we use to describe two species living together?
    7·1 answer
  • What does it mean if a conductor is in "electrostatic equilibrium"? a) The conductor is at rest.
    5·1 answer
  • two small balls are suspended on parallel threads of the same length so that they touch each other in the vertical position. the
    9·1 answer
  • The speed of a light wave in a certain transparent material is 0.589 times its speed in vacuum, which is 3.00 x108 m/s. When yel
    9·1 answer
  • Superman strikes a golf ball on the ground at a 38 degree angle above the horizontal at 147 m/s. What is the maximum height the
    13·1 answer
  • The ball is dropped from a certain height and is falling to the ground. If its acceleration is a constant 9.8 meters per second
    8·1 answer
  • Some students found this information about an energy saving lamp and a filament lamp that give out almost the same amount of lig
    11·1 answer
  • The normal formula to find force is F = m*a. What kind of math do you need to do
    7·1 answer
  • Which would most likely cause a decrease in the rate of energy production in a fusion nuclear reactor?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!