Answer: The correct option is that all of the sugar will come out of solution, and pure water will float to the top
Explanation:
Solution in the field of Chemistry is usually made up of two or more substances which contains a solute that dissolves in a solvent.
A solution can either be:
-> Saturated
--> Unsaturated or
-> Supersaturated.
A saturated solution is a solution with solutes that dissolves until it is unable to dissolve anymore leaving the undissolved solute beneath.
When there is mixture of a solute and a solvent in a solution the reactions that occurs are called crystallization and dissolution. Crystallization causes solid solutes to remain undissolved while dissolution is simply the dissolving process of the solute.
When Ryan added more sugar after reaching the saturation point of the mixture, the process of crystallization set in which surpassed the process of dissolution of the sugar solute leading to precipitation of the solute of out the solution.
Both bricks will hit the ground at the same time.
Falling vertically is always accelerating at 9.8 m/s² because of gravity.
Nothing that's happening horizontally has any effect on that.
The brick that happens to have some horizontal motion will
probably hit the ground way over there, but that will still be
at the same TIME as this one.
This is a perfect place to remind you of the old unbelievable story,
which I'll bet you heard before:
If you fire a bullet horizontally from a gun, and at the exact same
moment you DROP another bullet out of your hand next to the gun,
the two bullets will hit the ground at the same time ! Even though
they'll be far apart.
Horizontal speed has no effect on vertical behavior.
Using lens equation;
1/o + 1/i = 1/f; where o = Object distance, i = image distance (normally negative), f = focal length (normally negative)
Substituting;
1/o + 1/-30 = 1/-43 => 1/o = -1/43 + 1/30 = 0.01 => o = 1/0.01 = 99.23 cm
Therefore, the object should be place 99.23 cm from the lens.
Answer:
c = 894.90 m/s
Explanation:
Given data:
Frequency of wave = 471 Hz
Wavelength of wave = 1.9 m
Speed of wave = ?
Solution:
Formula:
Speed of wave = frequency × wavelength
c = f×λ
c = 471 Hz × 1.9 m
Hz = s⁻¹
c = 471s⁻¹ × 1.9 m
c = 894.90 m/s
The speed of wave is 894.90 m/s.
Answer:
Explanation:
The concept of elastic and inelastic demand is applied.
for an elastic demand, the elasticity must be greater than 1 and for an Inelastic demand, the elasticity must be less than 1.
The steps and appropriate calculation is as shown in the attached file.