The Kelvin scale has no negatives on it.
Zero Kelvin is 'Absolute Zero', and nothing can get colder than that.
Correct Answers is A.
The machines gives us some mechanical advantage. This means the mechanical average makes the work output greater than the work input
Simple most example is a lever. The force applied is smaller and the output work is larger as compared to input.
Option B cannot be true, as there must be a force to get some work done.
Option C and D are inverse of what a machine is designed for. A small force can be exerted through a large distance to have a large force exerted through a small distance. Common Example of this principle is a screw opener.
Part a.
u = 0, the initial velocity
v = 60 mi/h, the final velocity
a = 2.35 m/s², the acceleration.
Note that
1 m = 1609.34 m.
Therefore
v = (60 mi/h)*(1609.34 m/mi)*(1/3600 h/s) = 26.822 m/s
Use the formula
v = u + at
(26.822 m/s) = (2.35 m/s²)*(t s)
t = 26.822/2.35 = 11.4 s
Answer: 11.4 s
Part b.
We already determined that v = 60 mi/h = 26.822 m/s.
t = 0.6 s
Therefore
(26.822 m/s) = (a m/s²)*(0.6 s)
a = 26.822/0.6 = 44.7 m/s²
Answer: 44.7 m/s²
There are three types: divergent, convergent, and transform boundaries. I hope this helps.
Answer:
Correct answer: Fg = m · g
Explanation:
Newton's second law states that if a resultant force is applied to an object, the object begins to move at an accelerated rate.
The formula that presents this is:
F = m · a
this formula applies to an object moving on some surface
where m is the mass of the object and a the acceleration of the object
Let's take it now and watch the free fall:
The formula that presents this is:
Fg = m · g
this formula applies to an object moving at free fall in vertical direction
Free fall is also an accelerated movement to which Newton's second law applies.
where m is the mass of the object and g the gravitation acceleration of the object . We also know that g is equal:
g = γ · Me / d² where Me is mass of the earth
God is with you!!!