Hahahahaha. Okay.
So basically , force is equal to mass into acceleration.
F=ma
so when F=ma , we get acceleration=6m/s/s
Force is doubled.
Mass is 1/3 times original.
2F=1/3ma
Now , we rearrange , and we get 6F=ma
So , now for 6 times the original force , we get 6 times the initial acceleration.
So new acceleration = 6*6= 36m/s/s
The maximum velocity in a banked road, ignoring friction, is given by;
v = Sqrt (Rg tan ∅), where R = Radius of the curved road = 2*1000/2 = 1000 m, g = gravitational acceleration = 9.81 m/s^2, ∅ = Angle of bank.
Substituting;
30 m/s = Sqrt (1000*9.81*tan∅)
30^2 = 1000*9.81*tan∅
tan ∅ = (30^2)/(1000*9.81) = 0.0917
∅ = tan^-1(0.0917) = 5.24°
Therefore, the road has been banked at 5.24°.
Correct answer choice is:
C. Polarized in a vertical plane.
Explanation:
Polarized sunglasses give excellent glare shield, particularly on the water. Polarized lenses include a specific filter that prevents this type of strong reflected light, diminishing glare.
This is because when you angle one polarized lens to different perpendicularly, they prevent glare both horizontally and vertically. The polarized lenses are enduringly tinted sunglasses that exceedingly decrease glare.
Density <em>ρ</em> is mass <em>m</em> per unit volume <em>v</em>, or
<em>ρ</em> = <em>m</em> / <em>v</em>
Solving for <em>v</em> gives
<em>v</em> = <em>m</em> / <em>ρ</em>
So the given object has a volume of
<em>v</em> = (130 g) / (65 g/cm³) = 2 cm³
To find the ratio of planetary speeds Va/Vb we need the orbital velocity formula:
V=√({G*M}/R), where G is the gravitational constant, M is the mass of the distant star and R is the distance of the planet from the star it is orbiting.
So Va/Vb=[√( {G*M}/Ra) ] / [√( {G*M}/Rb) ], in our case Ra = 7.8*Rb
Va/Vb=[ √( {G*M}/{7.8*Rb} ) ] / [√( {G*M}/Rb )], we put everything under one square root by the rule: (√a) / (√b) = √(a/b)
Va/Vb=√ [ { (G*M)/(7.8*Rb) } / { (G*M)/(Rb) } ], when we cancel out G, M and Rb we get:
Va/Vb=√(1/7.8)/(1/1)=√(1/7.8)=0.358 so the ratio of Va/Vb = 0.358.