Answer:
Width of the slit will be equal to 1.47 mm
Explanation:
We have given wavelength of the light 
Distance D = 8 m
Distance between first minimum dark fringe and the central maximum is 2 mm
So 
We have to find the width of the slit
For the first order wavelength is equal to
, here a width of slit
So 
So width of the slit will be equal to 1.47 mm
Two light waves will interfere constructively if the path-length difference between them is a whole number.
<h3>
SUPERPOSITION</h3>
The principle of superposition state that, when two or more waves meet at a point, the resultant displacement at that point is equal to the sum of the displacements of the individual waves at that point.
Interference of waves can either be constructive, or destructive.
The two light waves, initially emitted in phase, will interfere constructively with maximum amplitude if the path-length difference between them is a whole number of wavelenght 1λ, 2λ, 3λ, 4λ etc
The equivalent phase differences between the waves will be 2
or 360 degrees, 4
or 720 degrees, 6
1080 degrees etc
Therefore, the two light waves, initially emitted in phase, will interfere constructively with maximum amplitude if the path-length difference between them is a whole number.
Learn more about Interference here: brainly.com/question/25310724
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the car is
The period of the circular motion is 
The radius is 
Generally the frequency of the circular motion is

=> 
=> 
Answer
when there are ten they don't grow so well but when there is less than 10 they tend to grow
The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.
To find the answer, we need to know about the tension.
<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
- Let's draw the free body diagram of the system using the given data.
- From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
- For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.

- We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.

- To find Ny, we need to find the tension T.
- For this, we can equate the net horizontal force.

- Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,

- Thus, the magnitude of the force that the beam exerts on the hi.nge will be,

Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.
Learn more about the tension here:
brainly.com/question/28106871
#SPJ1