Answer:
t = 300.3 seconds
Explanation:
Given that,
The mass of a freight train, 
Force applied on the tracks, 
Initial speed, u = 0
Final speed, v = 80 km/h = 22.3 m/s
We need to find the time taken by it to increase the speed of the train from rest.
The force acting on it is given by :
F = ma
or

So, the required time is 300.3 seconds.
Answer:
The time is 
Explanation:
Given that,
Capacitor = 120 μF
Voltage = 150 V
Resistance = 1.8 kΩ
Current = 50 mA
We need to calculate the discharge current
Using formula of discharge current

Put the value into the formula


We need to calculate the time
Using formula of current

Put the value into the formula





Hence, The time is 
shorelines of the southeast U.S.
Answer:
(a) has the highest frequency
Explanation:
E = hf...where E(is the energy of a photon);h(is the planck's constant) and f is the frequency of the photon
Whereby this formula shows us that energy of a photon is directly proportional to its frequency
So hence if the energy is high then the frequency of the photon is also high
Answer:
The force applied is 32 N
Explanation:
F = ma
F = 8 × 4
F = 32 N