Answer:
leggings
Explanation:
they allow the metal or sparks to not hurt you can the leggings can be easily and quickly removed.
Answer:
Explanation:
a) On the verge of tipping over, reaction acts at the corner A
When slippage occurs,
Block moves w/ const. velocity equilibrium
Three-force member: reaction at A must pass through B
tan b/2h, h b/ 2 θ µ = = ∴= k k ( µ )
b) When slippage occurs,
Block moves w/ const. velocity equilibrium
Three-force member: reaction at C must pass through G
k tanθ µ =
tan x/ H/2 , x H/2
Answer:
radius = 0.045 m
Explanation:
Given data:
density of oil = 780 kg/m^3
velocity = 20 m/s
height = 25 m
Total energy is = 57.5 kW
we have now
E = kinetic energy+ potential energy + flow work
![E = \dot m ( \frac{v^2}{2] + zg + p\nu)](https://tex.z-dn.net/?f=E%20%3D%20%5Cdot%20m%20%28%20%5Cfrac%7Bv%5E2%7D%7B2%5D%20%2B%20%20zg%20%2B%20p%5Cnu%29)
![E = \dot m( \frac{v^2}{2] + zg + p_{atm} \frac{1}{\rho})](https://tex.z-dn.net/?f=E%20%3D%20%5Cdot%20m%28%20%5Cfrac%7Bv%5E2%7D%7B2%5D%20%2B%20%20zg%20%2B%20p_%7Batm%7D%20%5Cfrac%7B1%7D%7B%5Crho%7D%29)

solving for flow rate
![\dot m = 99.977we know that [tex]\dot m = \rho AV](https://tex.z-dn.net/?f=%5Cdot%20m%20%3D%2099.977%3C%2Fp%3E%3Cp%3Ewe%20know%20that%20%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Cdot%20m%20%20%3D%20%5Crho%20AV)

solving for d

d = 0.090 m
so radius = 0.045 m
Answer:
total width bandwidth = 8kHz
Explanation:
given data
transmitter operating = 3.9 MHz
frequencies up to = 4 kHz
solution
we get here upper side frequencies that is
upper side frequencies = 3.9 ×
+ 4 × 10³
upper side frequencies = 3.904 MHz
and
now we get lower side frequencies that is
lower side frequencies = 3.9 ×
- 4 × 10³
lower side frequencies = 3.896 MHz
and now we get total width bandwidth
total width bandwidth = upper side frequencies - lower side frequencies
total width bandwidth = 8kHz
Answer:
363 pounds 32 degrees
Explanation:
Express your answers numerically in pounds and degrees to three significant figures separated by a comma. slader