1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anton [14]
3 years ago
13

Solved this question??????????????????

Engineering
1 answer:
pogonyaev3 years ago
5 0

I do not know!!!!!!!!

You might be interested in
Describe, in a general form, the equation, in time domain, that tells the voltage across a inductor, L, as a function of time wh
love history [14]

Answer:

a) V(t) = Ldi(t)/dt

b) If current is constant, V = 0

Explanation:

a) The voltage, V(t), across an inductor is proportional to the rate of change of the current flowing across it with time.

If  V represents the Voltage across the inductor

and i(t) represents the current across the inductor in time, t.

V(t) ∝ di(t)/dt

Introducing a proportionality constant,L, which is the inductance of the inductor

The general equation describing the voltage across the inductor of inductance, L, as a function of time when a current flows through it is shown below.

V(t) = Ldi(t)/dt ..................................................(1)

b) If the current flowing through the inductor is constant i.e. does not vary with time

di(t)/dt = 0   and hence the general equation (1) above becomes

V(t) = 0

4 0
3 years ago
When the rod is circular, radial lines remain straight and sections perpendicular to the axis do not warp. In this case, the str
Murljashka [212]

The question is incomplete. The complete question is :

The solid rod shown is fixed to a wall, and a torque T = 85N?m is applied to the end of the rod. The diameter of the rod is 46mm .

When the rod is circular, radial lines remain straight and sections perpendicular to the axis do not warp. In this case, the strains vary linearly along radial lines. Within the proportional limit, the stress also varies linearly along radial lines. If point A is located 12 mm from the center of the rod, what is the magnitude of the shear stress at that point?

Solution :

Given data :

Diameter of the rod : 46 mm

Torque, T = 85 Nm

The polar moment of inertia of the shaft is given by :

$J=\frac{\pi}{32}d^4$

$J=\frac{\pi}{32}\times (46)^4$

J = 207.6 mm^4

So the shear stress at point  A is :

$\tau_A =\frac{Tc_A}{J}$

$\tau_A =\frac{85 \times 10^3\times 12 }{207.6}$

$\tau_A = 4913.29 \ MPa$

Therefore, the magnitude of the shear stress at point A is 4913.29 MPa.

3 0
3 years ago
Turn on your____
storchak [24]

Answer:

b

Explanation:

5 0
3 years ago
Read 2 more answers
The elevation of the end of the steel beam supported by a concrete floor is adjusted by means of the steel wedges E and F. The b
Wewaii [24]

Answer:

a) P ≥ 22.164 Kips

b) Q = 5.4 Kips

Explanation:

GIven

W = 18 Kips

μ₁ = 0.30

μ₂ = 0.60

a) P = ?

We get F₁  and F₂ as follows:

F₁ = μ₁*W = 0.30*18 Kips = 5.4 Kips

F₂ = μ₂*Nef = 0.6*Nef

Then, we apply

∑Fy = 0   (+↑)

Nef*Cos 12º -  F₂*Sin 12º = W

⇒   Nef*Cos 12º -  (0.6*Nef)*Sin 12º = 18

⇒   Nef = 21.09 Kips

Wedge moves if

P ≥ F₁ + F₂*Cos 12º + Nef*Sin 12º

⇒  P ≥ 5.4 Kips + 0.6*21.09 Kips*Cos 12º + 21.09 Kips*Sin 12º

⇒  P ≥ 22.164 Kips

b) For the static equilibrium of base plate

Q = F₁ = 5.4 Kips

We can see the pic shown in order to understand the question.

7 0
3 years ago
Read 2 more answers
A three-point bending test was performed on an aluminum oxide specimen having a circular cross section of radius 5.6 mm; the spe
ankoles [38]

Answer:

F =  8849 N

Explanation:

Given:

Load at a given point = F =  4250 N

Support span = L = 44 mm

Radius = R = 5.6 mm

length thickness of tested material = 12 mm

First compute the flexural strength for circular cross section using the formula below:

σ_{fs} = F_{f} L / \pi  R^{3}

σ = FL / π R³

Putting the given values in the above formula:

σ = 4250 ( 44 x 10⁻³ ) / π  ( 5.6 x 10⁻³ ) ³

  = 4250 ( 44 x 10⁻³ )  / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 (44 x 1 /1000 )) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 4250 ( 11 / 250  ) / 3.141593 ( 5.6 x 10⁻³ ) ³

  = 187 / 3.141593 ( 5.6 x 1 / 1000 ) ³

  = 187 / 3.141593 (0.0056)³

  = 338943767.745358

  = 338.943768 x 10⁶

σ = 338 x 10⁶ N/m²

Now we compute the load i.e. F from the following formula:

F_{f} = 2 σ_{fs} d³/3 L

F = 2σd³/3L

  = 2(338 x 10⁶)(12 x 10⁻³)³ / 3(44 x 10⁻³)

  = 2 ( 338 x 1000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 2 ( 338000000 ) ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12 x 10⁻³)³ / 3 ( 44 x 10⁻³)

  = 676000000 ( 12  x  1/1000  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  3  / 250  )³ / 3 ( 44 x 10⁻³)

  = 676000000 (  27  / 15625000 )  / 3 ( 44 x 10⁻³)

  = 146016  / 125 / 3 ( 44 x 1 / 1000  )

  = ( 146016  / 125 ) /  (3 ( 11 /  250 ))

  =  97344  / 11

F =  8849 N

4 0
3 years ago
Other questions:
  • R 134a enters a air to fluid heat exchanger at 700 kPa and 50 oC. Air is circulated into the heat exchanger to cool the R134a to
    6·1 answer
  • Kjhwe ,kenwif ujwfeowlwfwfwfw...
    14·2 answers
  • A piston having a diameter of 5.48 inches and a length of 9.50 in slides downward with a
    13·1 answer
  • From the information generated in Prob. 6.4 (from your previous Aero HW#1), calculate the maximum rate of climb for the single-e
    13·1 answer
  • Hi all, could you solve this please?<br> What is the value of the resistance R
    14·1 answer
  • .If aligned and continuous carbon fibers with a diameter of 6.90 micron are embedded within an epoxy, such that the bond strengt
    11·1 answer
  • Think of an employee object. What are several of the possible states that the object may have over time?
    6·1 answer
  • While recharging a refrigerant system, the charging stops before the required amount of refrigerant has been inserted. What shou
    8·1 answer
  • 1. Lea y analice la Norma ISO 16949 - Calidad en la industria automotriz, luego se ubica en los requisitos particulares, usted m
    12·1 answer
  • Is an example of an electrical device.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!