Answer:
a)α= 53.13°
b)The velocity at the highest point = 15 m/s
The acceleration at the highest point = 9.8
c)h=15 m
V=18.02 m/s
Explanation:
Speed of water ,u= 25 m/s
So the horizontal component of speed u = u cos α
Given that horizontal distance cover by water in 3 s is 45 m.
So We know that in projectile motion horizontal acceleration is zero.
In horizontal direction
Distance = Velocity x time
45 = u cos α x 3
u cos α = 45
45 = 25 cos α x 3
cos α = 45/75
α= 53.13°
So the velocity at the highest point = u cos α
The velocity at the highest point = 15 m/s
The acceleration at the highest point = 9.8
Now the velocity along vertical direction(Vo) = u sin α
Vo= 25 sin 53.13°
Vo =20 m/s


h=15 m
So at 15 m above the ground water will strike .
The y-component of velocity after 3 sec
Vy= Vo - g t
Vy = 20 - 10 x 3
Vy= -10 m/s
The horizontal component of velocity will remain 15 m/s.
The resultant velocity

V=18.02 m/s
The amount of energy in molecules of matter determines the state of matter. Matter can exist in one of several different states, including a gas, liquid, or solid state.
Answer:
5.65 times
Explanation:
60 db sound is equal to 60 phons sound when frequency is kept at 1000Hz.
But when the frequency of sound is changed to 100 Hz , according to equal loudness curves , the loudness level on phon scale will be 35 phons.
A decrease of 10 phon on phon- scale makes sound 2 times less loud
Therefore a decrease of 25 phons will make loudness less intense by a factor equal to 2²°⁵ or 5.65 less intense . Therefore intensity at 100 Hz
must be increased 5.65 times so that its intensity matches intensity of 60 dB sound at 1000 Hz frequency.
I=120 V/20 ohms
=6.0 A
SO the answer would be <span>A. 6.00 A</span>