Answer:
the ship's energy is greater than this and the crew member does not meet the requirement
Explanation:
In this exercise to calculate kinetic energy or final ship speed in the supply hangar let's use the relationship
W =∫ F dx = ΔK
Let's replace
∫ (α x³ + β) dx = ΔK
α x⁴ / 4 + β x = ΔK
Let's look for the maximum distance for which the variation of the energy percent is 10¹⁰ J
x (α x³ + β) =
- K₀
= K₀ + x (α x³ + β)
Assuming that the low limit is x = 0, measured from the cargo hangar
Let's calculate
= 2.7 10¹¹ + 7.5 10⁴ (6.1 10⁻⁹ (7.5 10⁴) 3 -4.1 10⁶)
Kf = 2.7 10¹¹ + 7.5 10⁴ (2.57 10⁶ - 4.1 10⁶)
Kf = 2.7 10¹¹ - 1.1475 10¹¹
Kf = 1.55 10¹¹ J
In the problem it indicates that the maximum energy must be 10¹⁰ J, so the ship's energy is greater than this and the crew member does not meet the requirement
We evaluate the kinetic energy if the System is well calibrated
W = x F₀ =
–K₀
= K₀ + x F₀
We calculate
= 2.7 10¹¹ -7.5 10⁴ 3.5 10⁶
= (2.7 -2.625) 10¹¹
= 7.5 10⁹ J
Answer:
the answer is a. a ball is moving towards the camera faster then slower
Answer:
The mass of the solution is 120 g.
Explanation:
The mass of the solution is given by:

Where:
: is the mass of the solution
: is the mass of the solvent
: is the mass of the solute
In the solution, the solvent is the majority compound (in mass) and the solute is the minority (in mass), so the solvent is the water and the solute is sodium chloride.
Hence, the mass of the solution is:
I hope it helps you!
Answer:
The aim of Watson and Rayner was to condition a phobia in an emotionally stable child.
Explanation:
Does this help?
Given the temperature, we can tell if the substance is cold or not relative to the reference temperature. For example, compared to the substance having a temperature of 15 degrees C, the substance is colder and it is hotter from the substance of temperature lesser than 12 degrees C.