A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133
The molecular formula of the compound that we are required to find is the compound C4H8O8
<h3>What is empirical formula?</h3>
The empirical formula of a compound is a formula that shows the ratio of each atom present in the compound. We will start by dividing each mass with the relative atomic mass of the atom.
Carbon - 48.38 g/12 Hydrogen - 6.74 g/1 Oxygen - 53.5 g/16
Carbon - 4 Hydrogen - 6.74 Oxygen - 8.9
Dividing through by the lowest ratio;
Carbon - 4/4 Hydrogen - 6.74/4 Oxygen 8.9/4
Carbon 1 Hydrogen 2 Oxygen 2
The empirical formula is CH2O2.
To obtain the molecular formula; brainly.com/question/11588623
[12 + 2 + 32]n = 180
n = 180/[12 + 2 + 32]
n =4
The compound C4H8O8
Learn more about empirical formula:
Answer:
16 is the mass number. 8 is the atomic number.
Answer:
The International Date Line, established in 1884, passes through the mid-Pacific Ocean and roughly follows a 180 degrees longitude north-south line on the Earth. It is located halfway round the world from the prime meridian—the zero degrees longitude established in Greenwich, England, in 1852.
<u>Answer:</u> The atomic mass of these species is different and atomic number remains same.
<u>Explanation:</u>
Isotopes are the chemical species of the same element having different number of neutrons.
- Atomic number is equal to the number of protons or electrons present in that element.
Atomic Number = Number of electrons = Number of protons
- Atomic mass is defined as the sum of number of protons and neutrons contained in an atom.
Atomic Mass = Number of protons + Number of neutrons
For isotopes, as the number of neutrons differ, the atomic mass also differs.
For Example: Carbon has 3 naturally occurring isotopes:
. The atomic number remains the same but atomic mass differs.
Hence, for isotopes, the atomic mass of these species is different and atomic number remains same.