Answer: The enthalpy change is 34.3 kJ
Explanation:
The conversions involved in this process are :

Now we have to calculate the enthalpy change.
![\Delta H=[m\times c_{s}\times (T_{final}-T_{initial})]+n\times \Delta H_{fusion}+[m\times c_{l}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Bm%5Ctimes%20c_%7Bs%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D%2Bn%5Ctimes%20%5CDelta%20H_%7Bfusion%7D%2B%5Bm%5Ctimes%20c_%7Bl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
= enthalpy change = ?
m = mass of water = 72.0 g
= specific heat of ice = 
= specific heat of liquid water = 
n = number of moles of water = 
= enthalpy change for fusion = 6010 J/mole
Now put all the given values in the above expression, we get
![\Delta H=[72.0g\times 2.09J/g^0C\times (0-(-18)^0C]+4.00mole\times 6010J/mole+[72.0g\times 4.184J/g^)C\times (25-0)^0C]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B72.0g%5Ctimes%202.09J%2Fg%5E0C%5Ctimes%20%280-%28-18%29%5E0C%5D%2B4.00mole%5Ctimes%206010J%2Fmole%2B%5B72.0g%5Ctimes%204.184J%2Fg%5E%29C%5Ctimes%20%2825-0%29%5E0C%5D)
(1 KJ = 1000 J)
Therefore, the enthalpy change is 34.3 kJ
Sodium phosphate = Na₃PO₄
phosphorus triiodide = PI3
hope this helps. make brainliest please!
Answer : The chemical formula for the compound is, 
Explanation :
When the element 'M' react with the
to give
.
The balanced chemical reaction is,

In this reaction, 'M' is in mono-atomic form and
is in diatomic form.
By the stoichiometry,
2 moles 'M' react with the 1 mole of
to give 2 moles of
.
Therefore, the chemical formula of the compound is, 
Answer:
Calculate the number of moles of CO2 by the formula n=PV/RT, where P is the pressure from Step 3, V is the volume from Step 2, T is the temperature from Step 1 and R is a proportionality constant equal to 0.0821 L atm / K mol.
Explanation: