Let's assume that ground level is the height 0 meters. The change in potential energy is going to be gravitational potential energy, which is given by PE=mgh.
ΔPE=mgh-mgy
=mg(h-y)
=50(28-0)
=1400 J
Answer:
a) T² = (
) r³
b) veloicity the dependency is the inverse of the root of the distance
kinetic energy depends on the inverse of the distance
potential energy dependency is the inverse of distance
angular momentum depends directly on the root of the distance
Explanation:
1) for this exercise we will use Newton's second law
F = ma
in this case the acceleration is centripetal
a = v² / r
the linear and angular variable are related
v = w r
we substitute
a = w² r
force is the universal force of attraction
F = 
we substitute

w² = 
angular velocity is related to frequency and period
w = 2π f = 2π / T
we substitute

the final equation is
T² = () r³
b) the speed of the orbit can be found
v = w r
v = 
v = 
in this case the dependency is the inverse of the root of the distance
Kinetic energy
K = ½ M v²
K = ½ M GM / r
K = ½ GM² 1 / r
the kinetic energy depends on the inverse of the distance
Potential energy
U =
U = -G mM / r
dependency is the inverse of distance
Angular momentum
L = r x p
for a circular orbit
L = r p = r Mv
L =
L =
The angular momentum depends directly on the root of the distance
Answer:
1.68 s
Explanation:
From newton's equation of motion,
a = (v-u)/t.................................. Equation 1
Making t the subject of the equation
t =(v-u)g............................. Equation 2
Where t = time taken for the bowling pin to reach the maximum height, v = final velocity bowling pin, u = initial velocity of the bowling pin, g = acceleration due to gravity.
Note: Taking upward to be negative and down ward to be positive,
Given: v = 0 m/s ( at the maximum height), u = 8.20 m/s, g = -9.8 m/s²
t = (0-8.20)/-9.8
t = -8.20/-9.8
t = 0.84 s.
But,
T = 2t
Where T = time taken for the bowling pin to return to the juggler's hand.
T = 2(0.84)
T = 1.68 s.
T = 1.68 s
First, determine the mass of the object by dividing its weight on Earth by 9.8 m/s² as shown below,
m = 250 N / 9.8 m/s² = 25.51 kg
Then, multiply the obtained mass by the acceleration due to gravity (g) on Pluto.
W (in Pluto) = (25.51 kg) x (0.61 m/s²) = 15.56 N
Therefore, the object will only weigh 15.56 N.