Answer:
It is 20. g HF
Explanation:
H2 + F2 ==> 2HF ... balanced equation
Since the question is asking us to find the mass of product formed, we will want to first convert the molecules of H2 into moles of H2 (we could do this at the end of the calculations, but it's just as easy to do it now).
moles of H2 present (using Avogadro's number):
3.0x1023 molecules H2 x 1 mole H2/6.02x1023 molecules = 0.498 moles H2
From the balanced equation, we see that 1 mole H2 produces 2 moles HF. Therefore, we can now find the theoretical mass of HF produced from 0.498 moles H2:
0.498 moles H2 x 2 moles HF/1 mol H2 = 0.996 moles HF formed.
The molar mass of HF = 20.01 g/mole, thus...
0.996 moles HF x 20.01 g/mole = 19.93 g HF = 20. g HF formed (to 2 significant figures)
Increase, because you need heat to melt a solid to a liquid, so the temperature will have to get greater.
Answer:
Explanation:
The number of moles of solute is equal to product of the molar concentration (molarity) and the volume (in liters) of solution.
Since the volumes and the molar concentrations of the<em> NaOH </em>and <em>HCl </em>solutions mixed are equal, each one of them contributes the same number of moles of solute.
Since every mol of NaOH produces one mol of OH⁻ ions and every mol of HCl produces one mol of H⁺ ion, the number of moles of OH ⁻ and H⁺ in solution are equal.
Thus, OH⁻ and H⁺ ions will be neutralized by the reaction:
- OH⁻ (aq) + H⁺ (aq) ⇄ H₂O (l)
Which is strongly shifted to the right and has <em>neutral pH</em>.
Hence, you conclude that the approximate <em>pH of the solution is neutral.</em>
D.
The main properties of water are its polarity, cohesion, adhesion, surface tension, high specific heat, and evaporative cooling.
A: making s sandcastle. This is because water and sand is only a mixture, so they do not react with each other. All the rest include chemical reactions!