K5O2
convert grams to moles, divide both by the smallest mole mass, multiply that until hole.
30.5 g K ÷ 39.10 = .78 mol
6.24 g O ÷ 16 = .39 mol
.78 mol ÷ .39 mol = 2.5
.39 mol ÷ .39 mol = 1
2.5 x 2 = 5
1 x 2 = 2
K5O2
Answer:
a star shines due to thermonuclear fusion
Explanation:
Answer:
We will expect 4 moles of MgO to be formed (option b).
Explanation:
Step 1: The balanced equation
2Mg + O2 → 2MgO
Step 2: Data given
Number of moles of Magnesium = 4 moles
Oxygen = in excess → this means Magnesium is the limiting reactant
Magnesium will completely be consumed ( 4 moles). There will remain 0 moles.
For 2 moles of magnesium consumed, we need 1 mole of oxygen to produce 2 moles of MgO.
For 4 moles of magnesium, we need 4/2 = 2 moles of oxygen.
For 4 moles of magnesium, we will produce 4/1 = 4 moles of MgO
We will expect 4 moles of MgO to be formed (option b).
Answer:


Explanation:
Hello,
Based on the given undergoing chemical reaction is is rewritten below:

By stoichiometry we find the minimum mass of H2SO4 (in g) as shown below:

Moreover, mass of H2 gas (in g) would be produced by the complete reaction of the aluminum block turns out:

Best regards.
Answer : The half life of 28-Mg in hours is, 6.94
Explanation :
First we have to calculate the rate constant.
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = time passed by the sample = 48.0 hr
a = initial amount of the reactant disintegrate = 53500
a - x = amount left after decay process disintegrate = 53500 - 10980 = 42520
Now put all the given values in above equation, we get


Now we have to calculate the half-life.



Therefore, the half life of 28-Mg in hours is, 6.94