Answer:
ive learned about the chart , ive learned about the coolest chemicle reactions and how. the can change colors , ive also learned that chenistrey is all around us since the beginning of life ,and how liquid can turn solid
Explanation:
Answer: Colligative properties are those properties of solutions that are dependent on the concentration of the solutes in the solution.
Colligative properties has to do with solutions, that is, solutes that are dissolved in solvents. Examples of colligative properties are: freezing point depression, vapour pressure lowering, boiling point elevation and osmotic pressure. Colligative properties do not depend on the identity of the solutes, this implies that the effect of colligative properties are uniform across all solutions. For example, the freezing point depression of any solution will depend on the concentration of solutes that are dissolve in solution.
The ph before the addition of any Koh is<u> 10.105.</u>
Concentration is the abundance of a constituent divided by way of the overall volume of an aggregate. several sorts of mathematical descriptions may be outstanding: mass concentration, molar concentration, variety concentration, and extent awareness.
After the addition of 50 ml KOH,
moles of KOH = 50 * 0.13 =<u> 6.5 mmol </u>
<u>moles </u><u>of HClO = 50 * 0.13 = 6.5 mmol </u>
occurred hydrolysis solution,
pH = 0.5(14 + pKa + log [base conjugate])
pH = 0.5(14 + (- log (4 * 10^-8)) + log (6.5/(50 + 50)))
pH = <u>10.105</u>
The concentration of a substance is the quantity of solute found in a given amount of solution. Concentrations are normally expressed in terms of molarity, defined because of the variety of moles of solute in 1 L of answer.
The Concentration of an answer is a measure of the quantity of solute that has been dissolved in a given amount of solvent or answer. A concentrated answer is one that has a rather huge quantity of dissolved solute.
Learn more about concentration here:-brainly.com/question/26255204
#SPJ4
Answer:
N2H2(aq) + 2OH^-(aq) ----------> N2(g) + 2H2O(l) + 2e
Explanation:
Hydrazine is mostly used in thermal engineering as an anticorrosive agent. Hydrazine can be oxidized in aqueous solution as shown in the equation above. Oxidation has to do with loss of electrons and increase in oxidation number.
The oxidation number of nitrogen in the equation increased from -1 in hydrazine on the lefthand side of the reaction equation to zero in nitrogen on the right hand side of the reaction equation. Two electrons were lost in the process as shown.