Answer: The value of the equilibrium constant, Kc, for the reaction is 0.013
Explanation:
Initial concentration of
= 3.60 M
Initial concentration of
= 3.60 M
The given balanced equilibrium reaction is,

Initial conc. 3.60 M 3.60 M 0 M 0 M
At eqm. conc. (3.60-4x) M (3.60-7x) M (2x) M (6x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[N_2O_4]^2\times [H_2O]^6}{[NH_3]^4\times[Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BN_2O_4%5D%5E2%5Ctimes%20%5BH_2O%5D%5E6%7D%7B%5BNH_3%5D%5E4%5Ctimes%5BCl_2%5D%7D)
![[N_2O_4]=0.60M](https://tex.z-dn.net/?f=%5BN_2O_4%5D%3D0.60M)
2x = 0.60 M
x= 0.30 M
Now put all the given values in this expression, we get :

