Answer:W = 1.23×10^-6BTU
Explanation: Work = Surface tension × (A1 - A2)
W= Surface tension × 3.142 ×(D1^2 - D2^2)
Where A1= Initial surface area
A2= final surface area
Given:
D1=0.5 inches , D2= 3 inches
D1= 0.5 × (1ft/12inches)
D1= 0.0417 ft
D2= 3 ×(1ft/12inches)
D2= 0.25ft
Surface tension = 0.005lb ft^-1
W = [(0.25)^2 - (0.0417)^2]
W = 954 ×10^6lbf ft × ( 1BTU/778lbf ft)
W = 1.23×10^-6BTU
Answer:
T= 38.38 N
Explanation:
Here
mass of can = m = 3 kg
g= 9.8 m/sec2
angle θ = 40°
From figure we see the vertical and horizontal component of tension force T
If the can is to slip - then horizontal component of tension force should become equal to force of friction.
First we find force of friction
Fs= μ R
where
μ = 0.76
R = weight of can = mg = 3 × 9.8 = 29.4 N
Now horizontal component of tension
Tx= T cos 40 = T× 0.7660 N
==>T× 0.7660 = 29.4
==> T= 38.38 N
The elevation in reservoir at the rate of flow using is 03m/s is 114m.
The Reynolds range is the ratio of inertial forces to viscous forces. The Reynolds variety is a dimensionless variety used to categorize the fluids structures in which the impact of viscosity is crucial in controlling the velocities or the flow sample of a fluid.
The reason of the Reynolds number is to get a few experience of the relationship in fluid glide between inertial forces (this is those that maintain going by using Newton's first law – an item in motion stays in movement) and viscous forces, this is people who cause the fluid to come back to a forestall because of the viscosity of the fluid.
calculation,
Let L = 100 m pipe
L1 = 150 m pipe
H f = friction losses
Using Reynolds number, relative roughness, friction co- effiicients and friction losses
Substitute the value in equation
Z = 110= 0.48= 3.54
Z = 114m
Therefore water surface elevation at reservoir is 114 meter.
Learn more about rate of flow here:-brainly.com/question/21630019
#SPJ4
Answer:

Explanation:
Height of the cliff is given as

now the time taken by the diver to hit the surface is given as



Now in the same time it has to cover a distance of 13.39 m
so the speed in horizontal direction is given as



Answer:
(a). The speed of electron is
.
(b). The radius of electron is 
Explanation:
Given that,
Length = 2.5 cm
Distance = 6.0 mm
Magnetic field = 2.1 T
Potential difference = 700 V
(a). We need to calculate the electron's speed
Using formula of speed

Put the value into the formula



(b). We need to calculate the radius of electron
Using formula of centripetal force


Where,
m = mass of electron
v = speed of electron
r = radius
q = charge of electron
B = magnetic field
Put the value into the formula



Hence, (a). The speed of electron is
.
(b). The radius of electron is 4.2 cm