Answer:
150156.25 Ω
Explanation:
Resistance: This can be defined as the opposition to the flow of electric current in a circuit. The S.I unit of resistance is Ohm's (Ω)
The expression for resistance is given as
P = V²/R................ equation 1
Where P = power, V = Voltage, R = Resistance.
Making R the subject of the equation,
R = V²/P.................. Equation 2
Given: V = 115 V , P = 0.16 W.
Substitute into equation 2
R = 155²/0.16
R = 150156.25 Ω
Hence,
The resistance = 150156.25 Ω
The average velocity or displacement of a particle for the first time interval is <u>Δs / Δt = 6 cm/s.</u>
Solution:
As we know that displacement is calculated in centimeters and the unit of time is second.
The average velocity for the first interval [1,2] is given
Δs / Δt = s (t2) - s (t) / t2 - t1
Δs / Δt = 2sin2 π + 3cos 2 π - ( 2sin π + 3cos π ) / 2 - 1
Δs / Δt = 2(0) + 3(1) - 2(0) - 3 (-1) / 1
Δs / Δt = 6 cm/s
Thus the average velocity or displacement of a particle for the first time interval is Δs / Δt = 6 cm/s
If you need to learn more about displacement click here:
brainly.com/question/28370322
#SPJ4
The complete question is:
The displacement of a particle moving back and forth along a line is given by the following equation s(t) = 2sin π t + 3cos π t. Estimate the instantaneous velocity of the particle when t = 1
Answer:
longitudinal waves have those properties
Kinetic and potential energy he has the ability to make a meal and because he is making the meal
Zero.
Acceleration is defined as the change in velocity over time.
Since in your case there is no change, there is no acceleration, so it is zero:
Or in formula: <span>a=<span><span>Δv</span>t</span></span>
Where a=acceleration, <span>Δv</span>=change in velocity and t=time