Answer:
11.25 amps
Explanation:
For transformers, the magnetic flux

Therefore;

Ф = Фmax (cosωt) = 0.21·(cos(5·t))
From Faraday's law of induction, we have;
ε = -N × dΦ/dt
Which gives;
dΦ/dt = -1.05(sin (5t)
)
ε = -N × dΦ/dt = -50× -1.05(sin (5t)
)
ε = 52.5(sin (5t)
)
I = ε/R = 52.5(sin (5t)
)/3.3 = 15.9091(sin (5t)
) amps
The peak current is therefore = 15.9091 amps
The rms current = Peak current /√2 = 15.9091/(√2) = 11.25 amps.
Answer: The bug will remain motionless
Explanation:
According to Newton's first Law of Motion (sometimes called Law of Inertia):
<em>An object at rest or describing a uniform straight line motion (moving at constant velocity), will remain at rest or moving unless an external force is applied to it and changes its state of rest or motion.
</em>
In other words:
An object or body will keep its state of motion until an external force changes its state
This means that objects tend to remain in its state of motion, and is the definition of the inertia, as well.
In addition, according to his law, an object in rest can be in equilibrium (net force equals to zero), and a moving object can also be in equilibrium, as long as it keeps a constant velocity.
<h2>
This is why the bug, which is at rest will remain at rest, although the ants are simultaneously pulling it in different directions, since the resultant of all these forces is zero.</h2>
Answer:
D) A warm front brings drizzly weather.
Explanation:
Explanation:
We'll call the radius r and the diameter d:
We also assume that the riders are at a distance r = d/2 = 7m from the center of the wheel.
The period of the wheel is 24s. The tangent velocity of the wheel (and the riders) will be: (2pi/T)*r = 0.8 m/s (circa).
It means that in 3 minutes (180 seconds) they'll run 0.8 m/s * 180s = 144m.
Hopefully I understood the question. If yes, that's the answer.