Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.
Answer:
Stage 1: 1 days.
Stage 2: 2-3 days.
Stage 3: 4-5 days.
Stage 4: 6 days.
Stage 5 (a-c): 7-12 days.
Stage 6: c. 17 days.
Stage 7: c. 19 days.
Stage 8: c. 23 days.
Answer:
The right solution is "-602.69 KJ heat".
Explanation:
According to the question,
The 100.0 g of carbon dioxide:
= 
= 
We know that 16 moles of
formation associates with -11018 kJ of heat, then
0.8747 moles
formation associates with,
= 
= 
=
Answer:

Explanation:
<u>According to Arrhenius concept of acid and base:</u>
"When a base in a solution, produces/yields OH- (Hydroxide) ions."
So, when a base is dissolved in a solution, it produces OH- ions.
<u>For example:</u>
NaOH ⇄ Na⁺ + OH⁻ (So, it is a base)
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
I’m pretty sure the answer is “plant cell”