<span>Due that we already know the horizontal cross-sectional area of the ship, which is 2800 m2 and we are going to understand that value keeps constant for the whole 9.5 of height of the ship from the waterline till the new waterline after unloading, then we just need to calculate the volume as follows:
V = A * H , where V is volume, A is area and H is height
V= 2,800 * 9.5 = 26,600 m3
So this volum of 26,600 cubic meters is the volum of freshwater delivered in the island.</span>
When a charged object is brought near to but does not touch a neutral object, it causes the side of the neutral object that the charged object is near to become the other charge. It causes charge migration within the neutral object so the two charges (positive and negative) move to opposite sides of the object. Because the two objects do not touch, they do not repel each other, but rather have a slight attraction because of charge migration. If the two object were to touch then they would repel.
From the geometry of the problem, the 20 m-long cable creates
the hypotenuse of a right triangle, with the extended of the other two sides of
size 20 m * cos(30 deg), which is around 17.3 m. Therefore, the ball has increased
by 20 m - 17.3 m = 2.7 m.
The potential energy will have altered by m*g*h, which is 1400 kg * 9.8 m/s^2 *
1.6 m , or about 37044 joules.