I believe the correct answer from the choices listed above is the last option. If the volatility of X is higher than that of Y, then <span>Y’s molecules experience stronger London dispersion forces than X’s molecules. All molecules has london dispersion forces. Also, the stronger the bond, the harder it is to volatilize. Hope this answers the question.</span>
Answer:
Explanation:
a) Force of friction = μ R where μ is coefficient of kinetic friction and R is reaction force
R = mg where m is mass of the block
Force of friction F = μ x mg
= .173 x 12.2 x 9.8
= 20.68 N
b ) Only force of friction is acting on the body so
deceleration = force / mass = 20.68 / 12.2 = 1.7 m /s²
acceleration = - 1.7 m /s²
c )
v² = u² - 2 a s
v = 0 , u = 3.9 m /s
a = 1.7 m /s
0 = 3.9² - 2 x 1.7 x s
s = 4.47 m
The kinetic energy (KE) is 250 J and the gravitational potential energy (GPE) is 392 J
Thank you for posting
your question here at brainly. Feel free to ask more questions.
<span><span>The
best and most correct answer among the choices provided by the question is </span>B.-2.71 V.</span>
Mg2+(aq) + 2e- -> Mg(s) E=-2.37 V
Cu2+(aq) + 2e- -> Cu(s) E =+ 0.34 V
Since Cu is acting as the anode, the equation needs to be
reversed.
Cu(s) -> Cu2+(aq) + 2e- E =- 0.34 V
Ecell= -2.37 V+ (- 0.34 V) = -2.71 V
<span><span>
</span><span>Hope my answer would be a great help for you. </span> </span>
<span> </span>
Answer:
Explanation:
E₀ = 229.1 V/m
E = E₀ / √2 = 229.1 / 1.414 = 162 V/m
B = E / c ( c is velocity of em waves )
= 162 / (3 x 10⁸) = 54 x 10⁻⁸ T
rate of energy flow = ( E x B ) / μ₀
= 162 x 54 x 10⁻⁸ / 4π x 10⁻⁷
= 69.65 W per m².