1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
3 years ago
8

A 75 um thick polysulphone microporous membrane has an average porosity of E 0.35. Pure water flux through the membrane is 35 m'

/m h at a pressure drop of 2 bar at 25°C. The average pore size is estimated to be 0.8 um. Calculate the tortuosity factor of the pores, the resistance to flow offered by the membrane and its water permeability. The viscosity of water at 25°C is 0.9 cP
Chemistry
1 answer:
Paul [167]3 years ago
3 0

Explanation:

The given data is as follows.

           Water flux, J_{w} = 25 m^{3}/m^{2}h

                                       = \frac{25}{3600} m^{3}/m^{2}h

So, let velocity (u) = \frac{25}{3600} m/s = 6.9 \times 10^{-3}

             \rho = 998 kg/m^{3}

             Pore size, d = 0.8 \times 10^{-6} m

             \mu = 0.9 cP = 9 \times 10^{-4} Pa.s

Hence, calculate the reynold number as follows.

                 R_{e} = \frac{\rho \times u \times d}{\mu}            

                        = \frac{998 kg/m^{3} \times 6.9 \times 10^{-3} \times 0.8 \times 10^{-6} m}{9 \times 10^{-4} Pa.s}    

                        = 612.1 \times 10^{-5}

                        = 0.006

This means that the flow is laminar.

Now, we use Hagen-Poiseuille equation as follows.

             J_{w} = \frac{\varepsilon \times d^{2}}{32 \times \mu \times \tau} \times \frac{\Delta P}{L_{m}}

where,     \varepsilon = membrane porosity = 0.35

                              d = 0.8 \times 10^{-6} m

                       \Delta P = 2 \times 10^{5} Pa

                      \mu = 9 \times 10^{-4}

                      \tau = tortuosity

                      L_{m} = membrane thickness = 75 \times 10^{-6} m

                    \frac{25}{3600} = \frac{0.35 \times (0.8 \times 10^{-6})}{32 \times (9 \times 10^{-4}) \times \tau}

                            \tau = 3.73

Hence, the tortuosity factor of the pores is 3.73.

As flow resistance = R_{m}

               J_{w} = \frac{\Delta P}{r \times R_{m}}

               R_{m} = 3.2 \times 10^{10} m^{-1}

Water permeability is represented by L_{p}.

                    J_{w} = L_{p} \times \Delta P  

             6.9 \times 10^{-3} = L_{p} \times 2 \times 10^{5} Pa  

              L_{p} = 3.45 \times 10^{-8} m^{3}/m^{2}s Pa

Therefore, the resistance to flow is 3.2 \times 10^{10} m^{-1} and its water permeability is 3.45 \times 10^{-8} m^{3}/m^{2}s Pa.

You might be interested in
Sulfuric acid is essential to dozens of important industries from steelmaking to plastics and pharmaceuticals. More sulfuric aci
Pavlova-9 [17]

Given:

K = 0.71 = Kp

The reaction of sulphur with oxygen is

                            S(s)   + O2(g)  ---> SO2(g)

initial Pressure                   6.90         0

Change                                -x            +x

Equilibrium                     6.90-x          x

Kp = pSO2 / pO2 = 0.71 = x / (6.90-x)

4.899 - 0.71x  = x

4.899 = 1.71x

x = 2.86 atm = pressure of SO2 formed

temperature = 950 C = 950 + 273.15 K = 1223.15 K

Volume = 50 L

Let us calculate moles of SO2 formed using ideal gas equation as

PV = nRT

R = gas constant = 0.0821 L atm / mol K

putting other values

n = PV / RT = 2.86 X 50 / 1223.15 X 0.0821 = 1.42 moles

Moles of Sulphur required = 1.42 moles

Mass of sulphur required or consumed = moles X atomic mass of sulphur

mass of S = 1.42 X 32 = 45.57 grams or 0.04557 Kg  of sulphur



 


6 0
3 years ago
If an object has a density of 25 g/cm and a mass of 100 grams, what is its volume? O 40 cm3 0.25 cm 4 cm3 125 cm3​
xz_007 [3.2K]
<h3>Answer:</h3>

4 cm³

<h3>General Formulas and Concepts:</h3>

<u>Math</u>

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtract Property of Equality

<u>Chemistry</u>

<u>Gas Laws</u>

Density = Mass over Volume

  • D = m/V
<h3>Explanation:</h3>

<u>Step 1: Define</u>

D = 25 g/cm³

m = 100 g

<u>Step 2: Solve for </u><em><u>V</u></em>

  1. Substitute variables [D]:                    \displaystyle 25 \ g/cm^3 = \frac{100 \ g}{V}
  2. Multiply <em>V</em> on both sides:                  \displaystyle V(25 g/cm^3) = 100 \ g
  3. Isolate <em>V</em>:                                            \displaystyle V = 4 \ cm^3
8 0
3 years ago
CaCO3(s) ∆→CaO(s) + CO2(g).
sveta [45]

Answer:

74.9%.

Explanation:

Relative atomic mass data from a modern periodic table:

  • Ca: 40.078;
  • C: 12.011;
  • O: 15.999.

What's the <em>theoretical</em> yield of this reaction?

In other words, what's the mass of the CO₂ that should come out of heating 40.1 grams of CaCO₃?

Molar mass of CaCO₃:

M(\text{CaCO}_3) = 40.078 + 12.011 + 3 \times 15.999 = 100.086\;\text{g}\cdot\text{mol}^{-1}.

Number of moles of CaCO₃ available:

\displaystyle n(\text{CaCO}_3) =\frac{m}{M} = \frac{40.1}{100.086} = 0.400655\;\text{mol}.

Look at the chemical equation. The coefficient in front of both CaCO₃ and CO₂ is one. Decomposing every mole of CaCO₃ should produce one mole of CO₂.

n(\text{CO}2) = n(\text{CaCO}_3)= 0.400655\;\text{mol}.

Molar mass of CO₂:

M(\text{CO}_2) = 12.011 + 2\times 15.999 = 44.009\;\text{g}\cdot\text{mol}^{-1}.

Mass of the 0.400655 moles of \text{CO}_2 expected for the 40.1 grams of CaCO₃:

m(\text{CO}_2) = n\cdot M = 0.400655 \times 44.009 = 17.632\;\text{g}.

What's the <em>percentage</em> yield of this reaction?

\displaystyle \textbf{Percentage}\text{ Yield} = \frac{\textbf{Actual}\text{ Yield}}{\textbf{Theoretical}\text{ Yield}}\times 100\%\\\phantom{\textbf{Percentage}\text{ Yield}} = \frac{13.2}{17.632}\times 100\%\\\phantom{\textbf{Percentage}\text{ Yield}} =74.9\%.

7 0
3 years ago
___KClO3---&gt;___KCl+___O2 I need help bro.
Lina20 [59]
2 KClO3— 2 KCl + 3 O2
4 0
3 years ago
Analyze One of your classmates draws an
Diano4ka-milaya [45]

Answer:

no entiendo del todo el inglés

5 0
3 years ago
Other questions:
  • What is the mass of 7.91 cm to the power of three piece of lead having a density of 11.34 g/cm to the power of three?
    10·1 answer
  • Based on your knowledge of factors that affect the rates of chemical reactions, predict the trend in the last column of the expe
    7·2 answers
  • A 3.93 g sample of a laboratory solution contains 1.25 g of acid. what is the concentration of the solution as a mass percentage
    13·1 answer
  • Modify the given molecule to show the product of the oxidation reaction using as the oxidizing agent. Include the appropriate hy
    6·1 answer
  • In what ways are solid solid mixture categorised​
    6·1 answer
  • A lab director asks two students, Lydia and Damien, to each select a bottle of a concentrated weak base. When they reach the cab
    8·1 answer
  • Reducing the volume of a contained gas by one third, while holding temperature constant, causes pressure to A. be decreased by t
    13·1 answer
  • Which of the following is NOT likely to for a bond?
    14·1 answer
  • Which of the following are examples of physical properties of ethanol? Select all that apply.
    14·1 answer
  • PLEASE HELP PLEASE HELP PLEASE HELP
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!