Answer:
Tetraoxosulphate vi acid (H2SO4)
Explanation:
Becauses it ionizes completely
<span>To find the molar mass, look at a periodic table for each element.
Ibuprofen, C13 H18 and O2. Carbon has a molar mass of 12.01 g, Hydrogen has 1.008 g per mole, and Oxygen is 16.00 g per mole.
C: 13 * 12.01
H: 18 * 1.008
O: 2 * 16.00
Calculate that, add them all together, and that is the molar mass of C13H18O2.
Molar mass: 206.274
Next, you have 200mg in each tablet, with a ratio of C13H18O2 (molar mass) in GRAMS per Mole
So, you need to convert miligrams into grams, which is 200 divided by 1000.
0.2 g / Unknown mole = 206.274 g / 1 Mole
This is a cross multiplying ratio where you're going to solve for the unknown moles of grams per tablet compared to the moles per ibuprofen.
So, it's set up as:
0.2 g * 1 mole = 206.274 * x
0.2 = 206.274x
divide each side by 206.274 to get X alone
X = 0.00097
or 9.7 * 10^-4 moles
The last problem should be easy to figure out now that you have the numbers. 1 dose is 2 tablets, which is the moles we just calculated above, times four for the dosage.
</span>
168.96 g of carbon dioxide (CO₂)
Explanation:
The chemical reaction representing the combustion of acetylene:
2 C₂H₂ (g) + 5 O₂ (g)→ 4 CO₂ (g) + 2 H₂O (g)
number of moles = mass / molecular weight
number of moles of acetylene (C₂H₂) = 50 / 26 = 1.92 moles
Taking in account the stoichiometry of the chemical reaction, we devise the following reasoning:
if 2 moles of acetylene (C₂H₂) produces 4 moles of carbon dioxide (CO₂)
then 1.92 moles of acetylene (C₂H₂) produces X moles of carbon dioxide (CO₂)
X = (1.92 × 4) / 2 = 3.84 moles of carbon dioxide (CO₂)
mass = number of moles × molecular weight
mass of carbon dioxide (CO₂) = 3.84 × 44 = 168.96 g
Learn more about:
combustion of hydrocarbons
brainly.com/question/4919676
brainly.com/question/1406903
#learnwithBrainly
From the statement of Hess' law, the enthalpy of the reaction A---> C is +90 kJ
<h3>What is Hess' law?</h3>
Hess' law of constant heat summation states that for a multistep reaction, the standard enthalpy of reaction is always constant and is independent of the pathway or intermediate routes taken.
From Hess' law, the enthalpy change for the reaction A ----> C is calculated as follows:
A---> C = A ---> B + B ---> C
ΔH of A---> C = 30 kJ + 60 kJ
ΔH = 90 kJ
Therefore, the enthalpy of the reaction A---> C is +90 kJ
The above reaction A---> C can be shown in the enthalpy diagram below:
A -------------------> C (ΔH = +90 kJ)
\ /
\ / (ΔH = +60 kJ)
(ΔH = +30 J) \ /
> B
Learn more about enthalpy and Hess law at: brainly.com/question/9328637