1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
neonofarm [45]
3 years ago
6

You are performing a double slit experiment very similar to the one from DL by shining a laser on two nattow slits spaced 7.5 x

103 meters apart. However, by placing a piece of crystal in one of the slits, you are able to make it so that the rays of light that travel through the two slits are Ï out of phase with each other (that is to say, Ao,- ). If you observe that on a screen placed 4 meters from the two slits that the distance between the bright spot clos center of the pattern is 1.5 cm, what is the wavelength of the laser?
Physics
1 answer:
Blizzard [7]3 years ago
7 0

Complete Question

You are performing a double slit experiment very similar to the one from DL by shining a laser on two nattow slits spaced 7.5 * 10^{-3} meters apart. However, by placing a piece of crystal in one of the slits, you are able to make it so that the rays of light that travel through the two slits are Ï out of phase with each other (that is to say, Ao,- ). If you observe that on a screen placed 4 meters from the two slits that the distance between the bright spot closest to center of the pattern is 1.5 cm, what is the wavelength of the laser?

Answer:

The  wavelength is  \lambda  =  56250 nm

Explanation:

From the question we are told that

   The  distance of slit separation is  d =  7.5 *10^{-3} \  m

   The  distance of the screen is  D =  4 \  m

    The  distance between the bright spot closest to the center of the interference  is  k   = 1.5 \ cm = 0.015 \  m

   

Generally the width of the central  maximum fringe produced is mathematically represented as

        y  =  2 *  k  = \frac{ D  *  \lambda}{d}

  =>    2 *  0.015 =  \frac{ \lambda  *  4}{ 7.5 *10^{-3}}

   =>   \lambda  =  56250 *10^{-9} \ m

=>      \lambda  =  56250 nm

You might be interested in
In an area in which electricity costs 8 cents/kilowatt-hour, a 5 kW clothes dryer runs for 90 minutes to dry a load of laundry.
Over [174]
$0.60
90 mins is 1.5 hrs
5 kW × 1.5 = 7.5 kWh
7.5 kWh × $0.08 = $0.60
5 0
3 years ago
Read 2 more answers
Explain why a Chef in a very busy restaurant would prefer a copper pot over an aluminum pot. A) The copper pot would heat faster
stellarik [79]
A would be the answer 
5 0
3 years ago
Read 2 more answers
A space vehicle approaches a space station in orbit. The intent of the engineers is to have the vehicle slowly approach, reducin
N76 [4]

Answer: The total momentum before the docking maneuver is mV_{1}+MV_{2} and after the docking maneuver is (m+M) U

Explanation:

Linear momentum p (generally just called momentum) is defined as mass in motion and is given by the following equation:  

p=m.v  

Where m is the mass of the object and v its velocity.

According to the conservation of momentum law:

<em>"If two objects or bodies are in a closed system and both collide, the total momentum of these two objects before the collision </em>p_{i} <em>will be the same as the total momentum of these same two objects after the collision </em>p_{f}<em>". </em>

<em />

p_{i}=p_{f}

This means, that although the momentum of each object may change after the collision, the total momentum of the system does not change.

Now, the docking of a space vehicle with the space station is an inelastic collision, which means both objects remain together after the collision.

Hence, the<u> initial momentum</u> is:

p_{i}=mV_{1}+MV_{2}

Where:

m is the mass of the vehicle

V_{1} is the velocity of th vehicle

M is the mass of the space station

V_{2} is the velocity of the space station

And the <u>final momentum</u> is:

p_{f}=(m+M)U

Where:

U is the velocity of the vehicle and space station docked

6 0
3 years ago
Read 2 more answers
A person wearing a shoulder harness can survive a car crash if the acceleration is smaller than -300 m/s . assuming constant acc
mars1129 [50]

To solve this problem, we use the equation:

<span>d = (v^2  - v0^2) / 2a</span>

 

where,

d = distance of collapse

v0 = initial velocity = 101 km / h = 28.06 m / s

v = final velocity = 0

a = acceleration = - 300 m / s^2

 

d = (-28.06 m / s)^2 / (2 * - 300 m / s^2)

<span>d = 1.31 m</span>

3 0
3 years ago
Which law of motion describes squeal and oppisit forces of action and reaction​
Rom4ik [11]

These two forces are called action and reaction forces and are the subject of Newton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects.


Hope this helps! :)

4 0
3 years ago
Other questions:
  • (b) The speed of the vehicle is written as 90 km/h. State the speed in SI unit. Show your working in the space below.
    5·2 answers
  • During a solar eclipse, the Moon, Earth, and Sun all lie on the same line, with the Moon between the Earth and the Sun. The Moon
    9·1 answer
  • A circuit contains a resistor in series with a capacitor, the series combination being connected across the terminals of a batte
    13·1 answer
  • The formula for the hydronium ion is
    9·1 answer
  • A ball is dropped from an upper floor, some unknown distance above your apartment. As you look out of your window, which is 1.50
    7·1 answer
  • A careful photographic survey of Jupiter’s moon Io by the spacecraft Voyager 1 showed active volcanoes spewing liquid sulfur to
    15·1 answer
  • At a distance r1 from a point charge, the magnitude of the electric field created by the charge is 226 N/C. At a distance r2 fro
    5·2 answers
  • When the compasses are moved close to a wire with a current which will the compasses point
    9·2 answers
  • Suppose that scientists observe violent gas eruptions on a planet with an acceleration due to gravity of 3.9 m/s2. The jets thro
    15·1 answer
  • What is the momentum of a 50 kg object traveling 200 m/s
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!