The answer is D, the amount of energy stays the same.
So much brighter and the moon would be so much darker than it is now because the moon is further away from the moon than it is now...
Answer:
The actual angle is 30°
Explanation:
<h2>Equation of projectile:</h2><h2>y axis:</h2>

the velocity is Zero when the projectile reach in the maximum altitude:

When the time is vo/g the projectile are in the middle of the range.
<h2>x axis:</h2>

R=Range


**sin(2A)=2sin(A)cos(A)
<h2>The maximum range occurs when A=45°
(because sin(90°)=1)</h2><h2>The actual range R'=(2/√3)R:</h2>
Let B the actual angle of projectile

2B=60°
B=30°
Answer: equal to 3 m/s
Explanation:
Speed of golf ball will be equal to 3 m/s because in Perfect Elastic Collision Energy is conserved .
So speed of golf ball will be same in order to Satisfy
Initial Kinetic Energy =Final Kinetic Energy
Considering Bowling ball remains at rest after collision other wise some energy will also be acquired by bowling ball which automatically decreases the amount of Kinetic Energy of golf ball resulting its speed to decrease by some extent.
Answer: 0.999959 c
Explanation:
According to the special relativity theory, time is measured differently by two observers moving one relative another, according to the Lorentz Transform Equation, as follows:
t = t’ / t=t^'/√(1-(v)2/c2 )
where t= time for the moving observer (relative to the spacecraft, fixed on Earth) = 110 years.
t’= time for the observer at rest respect from spacecraft = 1 year
v= spacecraft constant speed
c= speed of light
Solving for v, with a six decimals precision as a multiple of c, we get:
v = 0.999959 c