If we neglect friction/air resistance, then the horizontal component
doesn't change, and the vertical component becomes (9.8 m/s downward)
greater each second thanks to gravity.
So, after 2 seconds, the horizontal component is still 40 m/s, and the
vertical component is (30 - 2·9.8) = 10.4 m/s upward.
Choice #1 says this.
Answer: a simple example of this would be the strong man game that can be found at most theme parks and fairs
Explanation: in the game you use a hammer to strike a buzzer or bell this causes the game to react by shooting up a small object giving you Newton’s third law your action had an equal or opposite effect on the bell and object that shoots up
if a volume of air is warmed it expands due to increased translational kinetic energy as it expands it will start to cool.
<h3>When does temperature increase volume?</h3>
We can then conclude that at constant pressure, temperature and volume are directly proportional: temperature increases, volume increases; decrease temperature, decrease volume.
In this case, the higher the temperature, the greater the kinetic energy that acts on the molecules of this gas, so when the gas expands, these molecules find more space and collide less, which will cause the gas to cool.
See more about volume at brainly.com/question/1578538
#SPJ12
Answer:
56 J
Explanation:
The following data were obtained from the question:
Energy 1 (E₁) = 7 J
Extention 1 (e₁) = 1.8 cm
Extention 2 (e₂) = 1.8 + 3.6 = 5.4 cm
Energy 2 (E₂) =?
Energy stored in a spring is given by the following equation:
E = ke²
Where E is the energy.
K is the spring constant.
e is the extension.
E = ke²
Divide both side by e²
K = E/e²
Thus,
E₁/e₁² = E₂/e₂²
7/ 1.8² = E₂/ 5.4²
7 / 3.24 = E₂/ 29.16
Cross multiply
3.24 × E₂ = 7 × 29.16
3.24 × E₂ = 204.12
Divide both side by 3.24
E₂ = 204.12 / 3.24
E₂ = 63 J
Thus, the additional energy required can be obtained as follow:
Energy 1 (E₁) = 7 J
Energy 2 (E₂) = 63 J
Additional energy = 63 – 7
Additional energy = 56 J